Properties

Label 1.9.f
Base field $\F_{3^{2}}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive no
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{2}}$
Dimension:  $1$
L-polynomial:  $1 + 5 x + 9 x^{2}$
Frobenius angles:  $\pm0.813570501323$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-11}) \)
Galois group:  $C_2$
Jacobians:  $1$
Isomorphism classes:  1

This isogeny class is simple and geometrically simple, not primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $15$ $75$ $720$ $6675$ $58575$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $15$ $75$ $720$ $6675$ $58575$ $532800$ $4780455$ $43047075$ $387441360$ $3486676875$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{2}}$.

Endomorphism algebra over $\F_{3^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}) \).

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{3^{2}}$.

SubfieldPrimitive Model
$\F_{3}$1.3.ab
$\F_{3}$1.3.b

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.9.af$2$1.81.ah