Invariants
Base field: | $\F_{3^{2}}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 5 x + 9 x^{2}$ |
Frobenius angles: | $\pm0.813570501323$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-11}) \) |
Galois group: | $C_2$ |
Jacobians: | $1$ |
Isomorphism classes: | 1 |
This isogeny class is simple and geometrically simple, not primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $15$ | $75$ | $720$ | $6675$ | $58575$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $75$ | $720$ | $6675$ | $58575$ | $532800$ | $4780455$ | $43047075$ | $387441360$ | $3486676875$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{2}}$.
Endomorphism algebra over $\F_{3^{2}}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}) \). |
Base change
This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{3^{2}}$.
Subfield | Primitive Model |
$\F_{3}$ | 1.3.ab |
$\F_{3}$ | 1.3.b |
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.9.af | $2$ | 1.81.ah |