Properties

Label 2.16.aj_bz
Base field $\F_{2^{4}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{4}}$
Dimension:  $2$
L-polynomial:  $1 - 9 x + 51 x^{2} - 144 x^{3} + 256 x^{4}$
Frobenius angles:  $\pm0.252176979752$, $\pm0.361066333219$
Angle rank:  $2$ (numerical)
Number field:  4.0.42625.1
Galois group:  $D_{4}$
Jacobians:  $8$
Isomorphism classes:  8

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $155$ $71455$ $17681780$ $4334531755$ $1099218828125$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $278$ $4313$ $66138$ $1048298$ $16769783$ $268414028$ $4294959538$ $68719500713$ $1099511056598$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{4}}$.

Endomorphism algebra over $\F_{2^{4}}$
The endomorphism algebra of this simple isogeny class is 4.0.42625.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.16.j_bz$2$2.256.v_ub