Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 11 x + 61 x^{2} - 187 x^{3} + 289 x^{4}$ |
Frobenius angles: | $\pm0.153753248596$, $\pm0.352010293509$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.134693.2 |
Galois group: | $D_{4}$ |
Jacobians: | $5$ |
Isomorphism classes: | 5 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $153$ | $83997$ | $24739641$ | $7006777749$ | $2016056118528$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $7$ | $291$ | $5035$ | $83891$ | $1419902$ | $24137883$ | $410373467$ | $6976022659$ | $118588717327$ | $2015993387166$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):
- $y^2=5x^6+13x^5+5x^4+15x^3+13x^2+x+6$
- $y^2=5x^6+2x^5+9x^4+14x^3+15x^2+13x+12$
- $y^2=13x^6+14x^5+4x^4+10x^3+4x+6$
- $y^2=7x^6+13x^5+2x^4+x^3+9x^2+5x+9$
- $y^2=14x^6+11x^5+9x^4+2x^3+7x^2+9x+13$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is 4.0.134693.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.17.l_cj | $2$ | (not in LMFDB) |