Properties

Label 2.17.al_cj
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $1 - 11 x + 61 x^{2} - 187 x^{3} + 289 x^{4}$
Frobenius angles:  $\pm0.153753248596$, $\pm0.352010293509$
Angle rank:  $2$ (numerical)
Number field:  4.0.134693.2
Galois group:  $D_{4}$
Jacobians:  $5$
Isomorphism classes:  5

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $153$ $83997$ $24739641$ $7006777749$ $2016056118528$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $7$ $291$ $5035$ $83891$ $1419902$ $24137883$ $410373467$ $6976022659$ $118588717327$ $2015993387166$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 4.0.134693.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.l_cj$2$(not in LMFDB)