Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 11 x + 59 x^{2} - 209 x^{3} + 361 x^{4}$ |
Frobenius angles: | $\pm0.0641455582635$, $\pm0.408994580500$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.291597.2 |
Galois group: | $D_{4}$ |
Jacobians: | $2$ |
Isomorphism classes: | 2 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $201$ | $128841$ | $46967067$ | $16879845933$ | $6119201069616$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $9$ | $359$ | $6849$ | $129523$ | $2471304$ | $47039051$ | $893916543$ | $16983744979$ | $322687359387$ | $6131063631014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):
- $y^2=2x^6+5x^5+5x^4+10x^3+10x^2+5x+15$
- $y^2=3x^6+4x^5+5x^4+4x^3+18x^2+15x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 4.0.291597.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.l_ch | $2$ | (not in LMFDB) |