Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 11 x + 60 x^{2} - 209 x^{3} + 361 x^{4}$ |
Frobenius angles: | $\pm0.0899168499442$, $\pm0.402539378619$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.444312.2 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $202$ | $129684$ | $47196088$ | $16911831072$ | $6122057290822$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $9$ | $361$ | $6882$ | $129769$ | $2472459$ | $47043970$ | $893945649$ | $16983929425$ | $322688208246$ | $6131066027161$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=8x^6+5x^4+4x^3+15x^2+x+8$
- $y^2=12x^6+9x^5+5x^4+x^3+x^2+17x+12$
- $y^2=14x^6+5x^5+18x^4+11x^3+18x^2+3x+6$
- $y^2=16x^6+9x^5+10x^4+12x^3+9x^2+8x+8$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 4.0.444312.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.l_ci | $2$ | (not in LMFDB) |