Properties

Label 2.25.aq_ek
Base field $\F_{5^{2}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive no
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 25 x^{2} )^{2}$
  $1 - 16 x + 114 x^{2} - 400 x^{3} + 625 x^{4}$
Frobenius angles:  $\pm0.204832764699$, $\pm0.204832764699$
Angle rank:  $1$ (numerical)
Jacobians:  $5$

This isogeny class is not simple, not primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $324$ $374544$ $246929796$ $153413222400$ $95489208772164$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $598$ $15802$ $392734$ $9778090$ $244187638$ $6103580122$ $152587231294$ $3814690378570$ $95367393027478$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{2}}$.

Endomorphism algebra over $\F_{5^{2}}$
The isogeny class factors as 1.25.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{5^{2}}$.

SubfieldPrimitive Model
$\F_{5}$2.5.a_ai

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.a_ao$2$2.625.abc_cdq
2.25.q_ek$2$2.625.abc_cdq
2.25.i_bn$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.a_ao$2$2.625.abc_cdq
2.25.q_ek$2$2.625.abc_cdq
2.25.i_bn$3$(not in LMFDB)
2.25.ao_du$4$(not in LMFDB)
2.25.am_di$4$(not in LMFDB)
2.25.ac_c$4$(not in LMFDB)
2.25.a_o$4$(not in LMFDB)
2.25.c_c$4$(not in LMFDB)
2.25.m_di$4$(not in LMFDB)
2.25.o_du$4$(not in LMFDB)
2.25.ai_bn$6$(not in LMFDB)
2.25.a_abw$8$(not in LMFDB)
2.25.a_bw$8$(not in LMFDB)
2.25.ag_l$12$(not in LMFDB)
2.25.g_l$12$(not in LMFDB)