Invariants
Base field: | $\F_{5^{2}}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 9 x + 25 x^{2} )( 1 - 8 x + 25 x^{2} )$ |
$1 - 17 x + 122 x^{2} - 425 x^{3} + 625 x^{4}$ | |
Frobenius angles: | $\pm0.143566293129$, $\pm0.204832764699$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $0$ |
Isomorphism classes: | 3 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $306$ | $364140$ | $244698408$ | $153113587200$ | $95466919164066$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $9$ | $581$ | $15660$ | $391969$ | $9775809$ | $244192466$ | $6103704105$ | $152588258689$ | $3814696195884$ | $95367416254901$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{2}}$.
Endomorphism algebra over $\F_{5^{2}}$The isogeny class factors as 1.25.aj $\times$ 1.25.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.