Properties

Label 2.25.ar_es
Base field $\F_{5^{2}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $2$
L-polynomial:  $( 1 - 9 x + 25 x^{2} )( 1 - 8 x + 25 x^{2} )$
  $1 - 17 x + 122 x^{2} - 425 x^{3} + 625 x^{4}$
Frobenius angles:  $\pm0.143566293129$, $\pm0.204832764699$
Angle rank:  $2$ (numerical)
Jacobians:  $0$
Isomorphism classes:  3

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $306$ $364140$ $244698408$ $153113587200$ $95466919164066$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $9$ $581$ $15660$ $391969$ $9775809$ $244192466$ $6103704105$ $152588258689$ $3814696195884$ $95367416254901$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{2}}$.

Endomorphism algebra over $\F_{5^{2}}$
The isogeny class factors as 1.25.aj $\times$ 1.25.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.ab_aw$2$2.625.abt_cmu
2.25.b_aw$2$2.625.abt_cmu
2.25.r_es$2$2.625.abt_cmu

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.ab_aw$2$2.625.abt_cmu
2.25.b_aw$2$2.625.abt_cmu
2.25.r_es$2$2.625.abt_cmu
2.25.ap_ea$4$(not in LMFDB)
2.25.ad_ae$4$(not in LMFDB)
2.25.d_ae$4$(not in LMFDB)
2.25.p_ea$4$(not in LMFDB)