Properties

Label 2.25.as_fb
Base field $\F_{5^{2}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive no
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $2$
L-polynomial:  $( 1 - 9 x + 25 x^{2} )^{2}$
  $1 - 18 x + 131 x^{2} - 450 x^{3} + 625 x^{4}$
Frobenius angles:  $\pm0.143566293129$, $\pm0.143566293129$
Angle rank:  $1$ (numerical)
Jacobians:  $1$

This isogeny class is not simple, not primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $289$ $354025$ $242487184$ $152814537225$ $95444634758929$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $564$ $15518$ $391204$ $9773528$ $244197294$ $6103828088$ $152589286084$ $3814702013198$ $95367439482324$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{2}}$.

Endomorphism algebra over $\F_{5^{2}}$
The isogeny class factors as 1.25.aj 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{5^{2}}$.

SubfieldPrimitive Model
$\F_{5}$2.5.a_aj

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.a_abf$2$2.625.ack_dhb
2.25.s_fb$2$2.625.ack_dhb
2.25.j_ce$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.a_abf$2$2.625.ack_dhb
2.25.s_fb$2$2.625.ack_dhb
2.25.j_ce$3$(not in LMFDB)
2.25.a_bf$4$(not in LMFDB)
2.25.aj_ce$6$(not in LMFDB)