Invariants
Base field: | $\F_{3}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 3 x + 3 x^{2} )( 1 - 2 x + 3 x^{2} )$ |
$1 - 5 x + 12 x^{2} - 15 x^{3} + 9 x^{4}$ | |
Frobenius angles: | $\pm0.166666666667$, $\pm0.304086723985$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $0$ |
Isomorphism classes: | 1 |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2$ | $84$ | $1064$ | $8736$ | $65582$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $-1$ | $9$ | $38$ | $105$ | $269$ | $738$ | $2183$ | $6609$ | $19874$ | $59289$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{6}}$.
Endomorphism algebra over $\F_{3}$The isogeny class factors as 1.3.ad $\times$ 1.3.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{3^{6}}$ is 1.729.abu $\times$ 1.729.cc. The endomorphism algebra for each factor is:
|
- Endomorphism algebra over $\F_{3^{2}}$
The base change of $A$ to $\F_{3^{2}}$ is 1.9.ad $\times$ 1.9.c. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{3^{3}}$
The base change of $A$ to $\F_{3^{3}}$ is 1.27.a $\times$ 1.27.k. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.