Properties

Label 2.3.af_m
Base field F3\F_{3}
Dimension 22
pp-rank 11
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  F3\F_{3}
Dimension:  22
L-polynomial:  (13x+3x2)(12x+3x2)( 1 - 3 x + 3 x^{2} )( 1 - 2 x + 3 x^{2} )
  15x+12x215x3+9x41 - 5 x + 12 x^{2} - 15 x^{3} + 9 x^{4}
Frobenius angles:  ±0.166666666667\pm0.166666666667, ±0.304086723985\pm0.304086723985
Angle rank:  11 (numerical)
Jacobians:  00
Isomorphism classes:  1

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable.

Newton polygon

pp-rank:  11
Slopes:  [0,1/2,1/2,1][0, 1/2, 1/2, 1]

Point counts

Point counts of the abelian variety

rr 11 22 33 44 55
A(Fqr)A(\F_{q^r}) 22 8484 10641064 87368736 6558265582

Point counts of the (virtual) curve

rr 11 22 33 44 55 66 77 88 99 1010
C(Fqr)C(\F_{q^r}) 1-1 99 3838 105105 269269 738738 21832183 66096609 1987419874 5928959289

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over F36\F_{3^{6}}.

Endomorphism algebra over F3\F_{3}
The isogeny class factors as 1.3.ad ×\times 1.3.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over F3\overline{\F}_{3}
The base change of AA to F36\F_{3^{6}} is 1.729.abu ×\times 1.729.cc. The endomorphism algebra for each factor is:
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.3.ab_a222.9.ab_m
2.3.b_a222.9.ab_m
2.3.f_m222.9.ab_m
2.3.ac_g332.27.k_cc

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.3.ab_a222.9.ab_m
2.3.b_a222.9.ab_m
2.3.f_m222.9.ab_m
2.3.ac_g332.27.k_cc
2.3.ab_a662.729.i_abnm
2.3.c_g662.729.i_abnm