Invariants
Base field: | $\F_{2^{2}}$ |
Dimension: | $2$ |
L-polynomial: | $1 - x + 5 x^{2} - 4 x^{3} + 16 x^{4}$ |
Frobenius angles: | $\pm0.304731991158$, $\pm0.605597892078$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2873.1 |
Galois group: | $D_{4}$ |
Jacobians: | $3$ |
Isomorphism classes: | 3 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $17$ | $459$ | $4148$ | $70227$ | $1110797$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $4$ | $26$ | $67$ | $274$ | $1084$ | $3935$ | $15964$ | $65890$ | $263011$ | $1048586$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2+(x^3+x+1)y=ax^6+x^3+ax^2+x+a+1$
- $y^2+(x^3+a)y=ax^6+ax^4+(a+1)x+1$
- $y^2+(x^3+a+1)y=ax^6+(a+1)x^4+ax+a+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{2}}$.
Endomorphism algebra over $\F_{2^{2}}$The endomorphism algebra of this simple isogeny class is 4.0.2873.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.4.b_f | $2$ | 2.16.j_bx |