Invariants
This isogeny class is simple but not geometrically simple ,
not primitive ,
not ordinary ,
and supersingular .
It is principally polarizable and
contains a Jacobian .
This isogeny class is supersingular .
p p p -rank : 0 0 0
Slopes : [ 1 / 2 , 1 / 2 , 1 / 2 , 1 / 2 ] [1/2, 1/2, 1/2, 1/2] [ 1 / 2 , 1 / 2 , 1 / 2 , 1 / 2 ]
Point counts
Point counts of the abelian variety
r r r
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
A ( F q r ) A(\F_{q^r}) A ( F q r )
3249 3249 3 2 4 9
6007401 6007401 6 0 0 7 4 0 1
13680577296 13680577296 1 3 6 8 0 5 7 7 2 9 6
33260630443209 33260630443209 3 3 2 6 0 6 3 0 4 4 3 2 0 9
79801762268091249 79801762268091249 7 9 8 0 1 7 6 2 2 6 8 0 9 1 2 4 9
Point counts of the curve
r r r
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
10 10 1 0
C ( F q r ) C(\F_{q^r}) C ( F q r )
64 64 6 4
2500 2500 2 5 0 0
116278 116278 1 1 6 2 7 8
5769604 5769604 5 7 6 9 6 0 4
282508864 282508864 2 8 2 5 0 8 8 6 4
13840816606 13840816606 1 3 8 4 0 8 1 6 6 0 6
678224719936 678224719936 6 7 8 2 2 4 7 1 9 9 3 6
33232942099204 33232942099204 3 3 2 3 2 9 4 2 0 9 9 2 0 4
1628413436496022 1628413436496022 1 6 2 8 4 1 3 4 3 6 4 9 6 0 2 2
79792266862562500 79792266862562500 7 9 7 9 2 2 6 6 8 6 2 5 6 2 5 0 0
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):
y 2 = ( 6 a + 4 ) x 6 + ( 2 a + 4 ) x 5 + ( 4 a + 5 ) x 4 + 5 a x 3 + ( 6 a + 6 ) x 2 + ( 6 a + 1 ) x + a + 2 y^2=(6a+4)x^6+(2a+4)x^5+(4a+5)x^4+5ax^3+(6a+6)x^2+(6a+1)x+a+2 y 2 = ( 6 a + 4 ) x 6 + ( 2 a + 4 ) x 5 + ( 4 a + 5 ) x 4 + 5 a x 3 + ( 6 a + 6 ) x 2 + ( 6 a + 1 ) x + a + 2
y 2 = 4 x 6 + ( 2 a + 5 ) x 5 + ( 2 a + 6 ) x 4 + ( 6 a + 3 ) x 3 + 6 a x 2 + ( a + 5 ) x + 6 y^2=4x^6+(2a+5)x^5+(2a+6)x^4+(6a+3)x^3+6ax^2+(a+5)x+6 y 2 = 4 x 6 + ( 2 a + 5 ) x 5 + ( 2 a + 6 ) x 4 + ( 6 a + 3 ) x 3 + 6 a x 2 + ( a + 5 ) x + 6
y 2 = ( 2 a + 1 ) x 6 + ( a + 3 ) x 5 + ( 6 a + 5 ) x 4 + ( 3 a + 1 ) x 3 + ( 4 a + 4 ) x 2 + ( 6 a + 1 ) x + a + 1 y^2=(2a+1)x^6+(a+3)x^5+(6a+5)x^4+(3a+1)x^3+(4a+4)x^2+(6a+1)x+a+1 y 2 = ( 2 a + 1 ) x 6 + ( a + 3 ) x 5 + ( 6 a + 5 ) x 4 + ( 3 a + 1 ) x 3 + ( 4 a + 4 ) x 2 + ( 6 a + 1 ) x + a + 1
y 2 = ( 4 a + 3 ) x 6 + 4 x 5 + ( 4 a + 5 ) x 4 + ( a + 4 ) x 3 + ( 5 a + 4 ) x 2 + ( 5 a + 4 ) x + 2 a + 5 y^2=(4a+3)x^6+4x^5+(4a+5)x^4+(a+4)x^3+(5a+4)x^2+(5a+4)x+2a+5 y 2 = ( 4 a + 3 ) x 6 + 4 x 5 + ( 4 a + 5 ) x 4 + ( a + 4 ) x 3 + ( 5 a + 4 ) x 2 + ( 5 a + 4 ) x + 2 a + 5
y 2 = ( 2 a + 6 ) x 6 + ( 5 a + 1 ) x 5 + ( 3 a + 6 ) x 4 + ( 6 a + 6 ) x 3 + ( 3 a + 4 ) x 2 + ( a + 2 ) x + 3 a + 5 y^2=(2a+6)x^6+(5a+1)x^5+(3a+6)x^4+(6a+6)x^3+(3a+4)x^2+(a+2)x+3a+5 y 2 = ( 2 a + 6 ) x 6 + ( 5 a + 1 ) x 5 + ( 3 a + 6 ) x 4 + ( 6 a + 6 ) x 3 + ( 3 a + 4 ) x 2 + ( a + 2 ) x + 3 a + 5
y 2 = x 6 + 4 a x 5 + 5 a x 4 + ( 6 a + 6 ) x 3 + ( 6 a + 5 ) x 2 + ( 6 a + 1 ) x + 2 a + 2 y^2=x^6+4ax^5+5ax^4+(6a+6)x^3+(6a+5)x^2+(6a+1)x+2a+2 y 2 = x 6 + 4 a x 5 + 5 a x 4 + ( 6 a + 6 ) x 3 + ( 6 a + 5 ) x 2 + ( 6 a + 1 ) x + 2 a + 2
y 2 = ( 6 a + 5 ) x 6 + ( 2 a + 1 ) x 5 + ( a + 6 ) x 4 + ( 3 a + 6 ) x 3 + ( 5 a + 3 ) x 2 + 3 x + 2 y^2=(6a+5)x^6+(2a+1)x^5+(a+6)x^4+(3a+6)x^3+(5a+3)x^2+3x+2 y 2 = ( 6 a + 5 ) x 6 + ( 2 a + 1 ) x 5 + ( a + 6 ) x 4 + ( 3 a + 6 ) x 3 + ( 5 a + 3 ) x 2 + 3 x + 2
y 2 = ( 3 a + 6 ) x 6 + 4 x 5 + ( 4 a + 4 ) x 4 + ( a + 5 ) x 3 + 4 a x 2 + 5 a + 3 y^2=(3a+6)x^6+4x^5+(4a+4)x^4+(a+5)x^3+4ax^2+5a+3 y 2 = ( 3 a + 6 ) x 6 + 4 x 5 + ( 4 a + 4 ) x 4 + ( a + 5 ) x 3 + 4 a x 2 + 5 a + 3
y 2 = ( a + 4 ) x 6 + 2 x 5 + x 4 + ( 2 a + 6 ) x 3 + ( 3 a + 4 ) x 2 + ( 2 a + 1 ) x + 5 a + 6 y^2=(a+4)x^6+2x^5+x^4+(2a+6)x^3+(3a+4)x^2+(2a+1)x+5a+6 y 2 = ( a + 4 ) x 6 + 2 x 5 + x 4 + ( 2 a + 6 ) x 3 + ( 3 a + 4 ) x 2 + ( 2 a + 1 ) x + 5 a + 6
y 2 = a x 6 + a x 5 + ( 3 a + 1 ) x 4 + 5 x 3 + ( 2 a + 1 ) x 2 + a y^2=ax^6+ax^5+(3a+1)x^4+5x^3+(2a+1)x^2+a y 2 = a x 6 + a x 5 + ( 3 a + 1 ) x 4 + 5 x 3 + ( 2 a + 1 ) x 2 + a
y 2 = ( a + 2 ) x 6 + 3 a x 5 + ( 5 a + 3 ) x 4 + ( a + 6 ) x 3 + ( 3 a + 6 ) x 2 + 2 a x + 2 y^2=(a+2)x^6+3ax^5+(5a+3)x^4+(a+6)x^3+(3a+6)x^2+2ax+2 y 2 = ( a + 2 ) x 6 + 3 a x 5 + ( 5 a + 3 ) x 4 + ( a + 6 ) x 3 + ( 3 a + 6 ) x 2 + 2 a x + 2
y 2 = ( 4 a + 4 ) x 6 + 2 a x 5 + ( 3 a + 3 ) x 4 + ( 6 a + 5 ) x 3 + ( a + 1 ) x 2 + ( 6 a + 4 ) x + 4 a y^2=(4a+4)x^6+2ax^5+(3a+3)x^4+(6a+5)x^3+(a+1)x^2+(6a+4)x+4a y 2 = ( 4 a + 4 ) x 6 + 2 a x 5 + ( 3 a + 3 ) x 4 + ( 6 a + 5 ) x 3 + ( a + 1 ) x 2 + ( 6 a + 4 ) x + 4 a
y 2 = ( 6 a + 4 ) x 6 + ( 2 a + 5 ) x 5 + ( 6 a + 2 ) x 4 + ( 3 a + 2 ) x 3 + ( 6 a + 5 ) x 2 + ( a + 4 ) x + 4 a + 3 y^2=(6a+4)x^6+(2a+5)x^5+(6a+2)x^4+(3a+2)x^3+(6a+5)x^2+(a+4)x+4a+3 y 2 = ( 6 a + 4 ) x 6 + ( 2 a + 5 ) x 5 + ( 6 a + 2 ) x 4 + ( 3 a + 2 ) x 3 + ( 6 a + 5 ) x 2 + ( a + 4 ) x + 4 a + 3
y 2 = 6 x 6 + ( 3 a + 4 ) x 5 + ( a + 5 ) x 4 + ( 4 a + 5 ) x 3 + ( 3 a + 6 ) x 2 + ( 3 a + 1 ) x + 2 a + 2 y^2=6x^6+(3a+4)x^5+(a+5)x^4+(4a+5)x^3+(3a+6)x^2+(3a+1)x+2a+2 y 2 = 6 x 6 + ( 3 a + 4 ) x 5 + ( a + 5 ) x 4 + ( 4 a + 5 ) x 3 + ( 3 a + 6 ) x 2 + ( 3 a + 1 ) x + 2 a + 2
y 2 = 2 x 6 + ( 4 a + 6 ) x 5 + x 4 + ( 5 a + 2 ) x 3 + ( 2 a + 3 ) x 2 + ( 2 a + 2 ) x + 2 a + 1 y^2=2x^6+(4a+6)x^5+x^4+(5a+2)x^3+(2a+3)x^2+(2a+2)x+2a+1 y 2 = 2 x 6 + ( 4 a + 6 ) x 5 + x 4 + ( 5 a + 2 ) x 3 + ( 2 a + 3 ) x 2 + ( 2 a + 2 ) x + 2 a + 1
y 2 = 3 x 6 + ( 3 a + 4 ) x 5 + 6 x 4 + 2 x 3 + 3 x 2 + 4 x + 2 a + 6 y^2=3x^6+(3a+4)x^5+6x^4+2x^3+3x^2+4x+2a+6 y 2 = 3 x 6 + ( 3 a + 4 ) x 5 + 6 x 4 + 2 x 3 + 3 x 2 + 4 x + 2 a + 6
y 2 = ( a + 2 ) x 6 + ( a + 5 ) x 5 + ( 3 a + 3 ) x 4 + 3 a x 3 + ( 5 a + 4 ) x 2 + ( 6 a + 4 ) x + 5 a + 3 y^2=(a+2)x^6+(a+5)x^5+(3a+3)x^4+3ax^3+(5a+4)x^2+(6a+4)x+5a+3 y 2 = ( a + 2 ) x 6 + ( a + 5 ) x 5 + ( 3 a + 3 ) x 4 + 3 a x 3 + ( 5 a + 4 ) x 2 + ( 6 a + 4 ) x + 5 a + 3
All geometric endomorphisms are defined over F 7 6 \F_{7^{6}} F 7 6 .
Endomorphism algebra over F 7 2 \F_{7^{2}} F 7 2
The endomorphism algebra of this simple isogeny class is the quaternion algebra over Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 ) with the following ramification data at primes above 7 7 7 , and unramified at all archimedean places: v v v (7 7 7 ,π + 2 \pi + 2 π + 2 ) (7 7 7 ,π + 4 \pi + 4 π + 4 ) inv v \operatorname{inv}_v i n v v 1 / 2 1/2 1 / 2 1 / 2 1/2 1 / 2
where π \pi π is a root of x 2 − x + 1 x^{2} - x + 1 x 2 − x + 1 .
Endomorphism algebra over F ‾ 7 2 \overline{\F}_{7^{2}} F 7 2
The base change of A A A to F 7 6 \F_{7^{6}} F 7 6 is 1.117649.abak 2 and its endomorphism algebra is M 2 ( B ) \mathrm{M}_{2}(B) M 2 ( B ) , where B B B is the quaternion algebra over Q \Q Q ramified at 7 7 7 and ∞ \infty ∞ .
Base change
This isogeny class is not primitive . It is a base change from the following isogeny classes over subfields of F 7 2 \F_{7^{2}} F 7 2 .
Subfield Primitive Model
F 7 \F_{7} F 7 2.7.a_h
Twists