Properties

Label 2.49.o_fr
Base field F72\F_{7^{2}}
Dimension 22
pp-rank 00
Ordinary no
Supersingular yes
Simple yes
Geometrically simple no
Primitive no
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  F72\F_{7^{2}}
Dimension:  22
L-polynomial:  (1+7x+49x2)2( 1 + 7 x + 49 x^{2} )^{2}
  1+14x+147x2+686x3+2401x41 + 14 x + 147 x^{2} + 686 x^{3} + 2401 x^{4}
Frobenius angles:  ±0.666666666667\pm0.666666666667, ±0.666666666667\pm0.666666666667
Angle rank:  00 (numerical)
Number field:  Q(3)\Q(\sqrt{-3})
Galois group:  C2C_2
Jacobians:  1717

This isogeny class is simple but not geometrically simple, not primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

pp-rank:  00
Slopes:  [1/2,1/2,1/2,1/2][1/2, 1/2, 1/2, 1/2]

Point counts

Point counts of the abelian variety

rr 11 22 33 44 55
A(Fqr)A(\F_{q^r}) 32493249 60074016007401 1368057729613680577296 3326063044320933260630443209 7980176226809124979801762268091249

Point counts of the curve

rr 11 22 33 44 55 66 77 88 99 1010
C(Fqr)C(\F_{q^r}) 6464 25002500 116278116278 57696045769604 282508864282508864 1384081660613840816606 678224719936678224719936 3323294209920433232942099204 16284134364960221628413436496022 7979226686256250079792266862562500

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over F76\F_{7^{6}}.

Endomorphism algebra over F72\F_{7^{2}}
The endomorphism algebra of this simple isogeny class is the quaternion algebra over Q(3)\Q(\sqrt{-3}) with the following ramification data at primes above 77, and unramified at all archimedean places:
vv (7 7 ,π+2 \pi + 2 ) (7 7 ,π+4 \pi + 4 )
invv\operatorname{inv}_v1/21/21/21/2
where π\pi is a root of x2x+1x^{2} - x + 1.
Endomorphism algebra over F72\overline{\F}_{7^{2}}
The base change of AA to F76\F_{7^{6}} is 1.117649.abak 2 and its endomorphism algebra is M2(B)\mathrm{M}_{2}(B), where BB is the quaternion algebra over Q\Q ramified at 77 and \infty.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of F72\F_{7^{2}}.

SubfieldPrimitive Model
F7\F_{7}2.7.a_h

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.49.ao_fr22(not in LMFDB)
2.49.abc_li33(not in LMFDB)
2.49.a_abx44(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.49.ao_fr22(not in LMFDB)
2.49.abc_li33(not in LMFDB)
2.49.a_abx44(not in LMFDB)
2.49.a_adu66(not in LMFDB)
2.49.bc_li66(not in LMFDB)
2.49.ao_du1212(not in LMFDB)
2.49.a_du1212(not in LMFDB)
2.49.o_du1212(not in LMFDB)
2.49.h_bx1515(not in LMFDB)
2.49.a_a2424(not in LMFDB)
2.49.ah_bx3030(not in LMFDB)