Invariants
Base field: | $\F_{5}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x^{2} + 25 x^{4}$ |
Frobenius angles: | $\pm0.217952891576$, $\pm0.782047108424$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{3})\) |
Galois group: | $C_2^2$ |
Jacobians: | $4$ |
Isomorphism classes: | 12 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $24$ | $576$ | $15768$ | $451584$ | $9760344$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $6$ | $22$ | $126$ | $718$ | $3126$ | $15910$ | $78126$ | $388894$ | $1953126$ | $9755062$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=x^6+x^5+2x^4+x^3+4x^2+3x+1$
- $y^2=2x^6+3x^5+4x^4+3x^3+3x+1$
- $y^2=x^5+3x^4+4x^3+x^2+4x$
- $y^2=x^6+x^3+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{2}}$.
Endomorphism algebra over $\F_{5}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{3})\). |
The base change of $A$ to $\F_{5^{2}}$ is 1.25.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.