Properties

Label 2.5.a_k
Base field $\F_{5}$
Dimension $2$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $( 1 + 5 x^{2} )^{2}$
  $1 + 10 x^{2} + 25 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.5$
Angle rank:  $0$ (numerical)
Jacobians:  $2$

This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $36$ $1296$ $15876$ $331776$ $9771876$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $46$ $126$ $526$ $3126$ $16126$ $78126$ $388126$ $1953126$ $9778126$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{2}}$.

Endomorphism algebra over $\F_{5}$
The isogeny class factors as 1.5.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$
Endomorphism algebra over $\overline{\F}_{5}$
The base change of $A$ to $\F_{5^{2}}$ is 1.25.k 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $5$ and $\infty$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.5.a_af$3$2.125.a_jq
2.5.a_ak$4$2.625.adw_fog
2.5.a_a$8$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.5.a_af$3$2.125.a_jq
2.5.a_ak$4$2.625.adw_fog
2.5.a_a$8$(not in LMFDB)
2.5.a_f$12$(not in LMFDB)
2.5.af_p$20$(not in LMFDB)
2.5.f_p$20$(not in LMFDB)