Properties

Label 2.7.ag_s
Base field $\F_{7}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
L-polynomial:  $1 - 6 x + 18 x^{2} - 42 x^{3} + 49 x^{4}$
Frobenius angles:  $\pm0.0461154155528$, $\pm0.453884584447$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{5})\)
Galois group:  $C_2^2$
Jacobians:  $2$
Isomorphism classes:  3

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $20$ $2320$ $111620$ $5382400$ $276390500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $50$ $326$ $2238$ $16442$ $117650$ $824126$ $5760958$ $40338002$ $282475250$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7^{4}}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{5})\).
Endomorphism algebra over $\overline{\F}_{7}$
The base change of $A$ to $\F_{7^{4}}$ is 1.2401.ade 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.7.g_s$2$2.49.a_ade
2.7.a_ae$8$(not in LMFDB)
2.7.a_e$8$(not in LMFDB)