Properties

Label 3.3.ad_ad_s
Base field $\F_{3}$
Dimension $3$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
L-polynomial:  $( 1 - 3 x + 3 x^{2} )( 1 - 3 x^{2} )^{2}$
  $1 - 3 x - 3 x^{2} + 18 x^{3} - 9 x^{4} - 27 x^{5} + 27 x^{6}$
Frobenius angles:  $0$, $0$, $\pm0.166666666667$, $1$, $1$
Angle rank:  $0$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4$ $112$ $18928$ $372736$ $15870844$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $1$ $-5$ $28$ $55$ $271$ $676$ $2269$ $6319$ $19684$ $57835$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{12}}$.

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ad $\times$ 2.3.a_ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{12}}$ is 1.531441.acec 3 and its endomorphism algebra is $\mathrm{M}_{3}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $3$ and $\infty$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.3.d_ad_as$2$3.9.ap_dv_aoo
3.3.ad_g_aj$3$(not in LMFDB)
3.3.a_ad_a$3$(not in LMFDB)
3.3.a_g_a$3$(not in LMFDB)
3.3.d_ad_as$3$(not in LMFDB)
3.3.d_g_j$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.3.d_ad_as$2$3.9.ap_dv_aoo
3.3.ad_g_aj$3$(not in LMFDB)
3.3.a_ad_a$3$(not in LMFDB)
3.3.a_g_a$3$(not in LMFDB)
3.3.d_ad_as$3$(not in LMFDB)
3.3.d_g_j$3$(not in LMFDB)
3.3.ad_j_as$4$(not in LMFDB)
3.3.d_j_s$4$(not in LMFDB)
3.3.ad_g_aj$6$(not in LMFDB)
3.3.a_ad_a$6$(not in LMFDB)
3.3.a_g_a$6$(not in LMFDB)
3.3.d_g_j$6$(not in LMFDB)
3.3.ad_d_a$8$(not in LMFDB)
3.3.d_d_a$8$(not in LMFDB)
3.3.aj_bk_add$12$(not in LMFDB)
3.3.ag_s_abk$12$(not in LMFDB)
3.3.ad_a_j$12$(not in LMFDB)
3.3.ad_g_aj$12$(not in LMFDB)
3.3.ad_j_as$12$(not in LMFDB)
3.3.a_ad_a$12$(not in LMFDB)
3.3.a_a_a$12$(not in LMFDB)
3.3.a_g_a$12$(not in LMFDB)
3.3.a_j_a$12$(not in LMFDB)
3.3.d_ad_as$12$(not in LMFDB)
3.3.d_a_aj$12$(not in LMFDB)
3.3.d_g_j$12$(not in LMFDB)
3.3.d_j_s$12$(not in LMFDB)
3.3.g_s_bk$12$(not in LMFDB)
3.3.j_bk_dd$12$(not in LMFDB)
3.3.ad_d_a$24$(not in LMFDB)
3.3.a_d_a$24$(not in LMFDB)
3.3.d_d_a$24$(not in LMFDB)
3.3.a_a_aj$36$(not in LMFDB)
3.3.a_a_j$36$(not in LMFDB)