Properties

Label 3.8.ai_bk_aeq
Base field $\F_{2^{3}}$
Dimension $3$
$p$-rank $0$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{3}}$
Dimension:  $3$
L-polynomial:  $1 - 8 x + 36 x^{2} - 120 x^{3} + 288 x^{4} - 512 x^{5} + 512 x^{6}$
Frobenius angles:  $\pm0.0435981566527$, $\pm0.329312442367$, $\pm0.527830414776$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\zeta_{7})\)
Galois group:  $C_6$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $0$
Slopes:  $[1/3, 1/3, 1/3, 2/3, 2/3, 2/3]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $197$ $290969$ $131937401$ $66073531489$ $34877605586657$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $1$ $73$ $505$ $3937$ $32481$ $261313$ $2092161$ $16770561$ $134249473$ $1073810433$

Jacobians and polarizations

This isogeny class contains a Jacobian, and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{21}}$.

Endomorphism algebra over $\F_{2^{3}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{7})\).
Endomorphism algebra over $\overline{\F}_{2^{3}}$
The base change of $A$ to $\F_{2^{21}}$ is the simple isogeny class 3.2097152.ahka_bfyoxc_adesazpwa and its endomorphism algebra is the division algebra of dimension 9 over \(\Q(\sqrt{-7}) \) with the following ramification data at primes above $2$, and unramified at all archimedean places:
$v$ ($ 2 $,\( \pi \)) ($ 2 $,\( \pi + 1 \))
$\operatorname{inv}_v$$1/3$$2/3$
where $\pi$ is a root of $x^{2} - x + 2$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.8.i_bk_eq$2$(not in LMFDB)
3.8.g_i_ai$7$(not in LMFDB)
3.8.g_bk_ea$7$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.8.i_bk_eq$2$(not in LMFDB)
3.8.g_i_ai$7$(not in LMFDB)
3.8.g_bk_ea$7$(not in LMFDB)
3.8.ag_i_i$14$(not in LMFDB)
3.8.ag_bk_aea$14$(not in LMFDB)
3.8.i_bk_eq$14$(not in LMFDB)