Properties

Label 3.8.ai_bk_aeq
Base field F23\F_{2^{3}}
Dimension 33
pp-rank 00
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  F23\F_{2^{3}}
Dimension:  33
L-polynomial:  18x+36x2120x3+288x4512x5+512x61 - 8 x + 36 x^{2} - 120 x^{3} + 288 x^{4} - 512 x^{5} + 512 x^{6}
Frobenius angles:  ±0.0435981566527\pm0.0435981566527, ±0.329312442367\pm0.329312442367, ±0.527830414776\pm0.527830414776
Angle rank:  11 (numerical)
Number field:  Q(ζ7)\Q(\zeta_{7})
Galois group:  C6C_6

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

pp-rank:  00
Slopes:  [1/3,1/3,1/3,2/3,2/3,2/3][1/3, 1/3, 1/3, 2/3, 2/3, 2/3]

Point counts

Point counts of the abelian variety

rr 11 22 33 44 55
A(Fqr)A(\F_{q^r}) 197197 290969290969 131937401131937401 6607353148966073531489 3487760558665734877605586657

Point counts of the curve

rr 11 22 33 44 55 66 77 88 99 1010
C(Fqr)C(\F_{q^r}) 11 7373 505505 39373937 3248132481 261313261313 20921612092161 1677056116770561 134249473134249473 10738104331073810433

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over F221\F_{2^{21}}.

Endomorphism algebra over F23\F_{2^{3}}
The endomorphism algebra of this simple isogeny class is Q(ζ7)\Q(\zeta_{7}).
Endomorphism algebra over F23\overline{\F}_{2^{3}}
The base change of AA to F221\F_{2^{21}} is the simple isogeny class 3.2097152.ahka_bfyoxc_adesazpwa and its endomorphism algebra is the division algebra of dimension 9 over Q(7)\Q(\sqrt{-7}) with the following ramification data at primes above 22, and unramified at all archimedean places:
vv (2 2 ,π \pi ) (2 2 ,π+1 \pi + 1 )
invv\operatorname{inv}_v1/31/32/32/3
where π\pi is a root of x2x+2x^{2} - x + 2.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.8.i_bk_eq22(not in LMFDB)
3.8.g_i_ai77(not in LMFDB)
3.8.g_bk_ea77(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.8.i_bk_eq22(not in LMFDB)
3.8.g_i_ai77(not in LMFDB)
3.8.g_bk_ea77(not in LMFDB)
3.8.ag_i_i1414(not in LMFDB)
3.8.ag_bk_aea1414(not in LMFDB)
3.8.i_bk_eq1414(not in LMFDB)