Properties

Label 3.8.l_ci_ia
Base field F23\F_{2^{3}}
Dimension 33
pp-rank 11
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive no
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  F23\F_{2^{3}}
Dimension:  33
L-polynomial:  (1+4x+8x2)(1+7x+24x2+56x3+64x4)( 1 + 4 x + 8 x^{2} )( 1 + 7 x + 24 x^{2} + 56 x^{3} + 64 x^{4} )
  1+11x+60x2+208x3+480x4+704x5+512x61 + 11 x + 60 x^{2} + 208 x^{3} + 480 x^{4} + 704 x^{5} + 512 x^{6}
Frobenius angles:  ±0.581839774401\pm0.581839774401, ±0.750000000000\pm0.750000000000, ±0.941488805765\pm0.941488805765
Angle rank:  22 (numerical)

This isogeny class is not simple, not primitive, not ordinary, and not supersingular. It is principally polarizable.

Newton polygon

pp-rank:  11
Slopes:  [0,1/2,1/2,1/2,1/2,1][0, 1/2, 1/2, 1/2, 1/2, 1]

Point counts

Point counts of the abelian variety

rr 11 22 33 44 55
A(Fqr)A(\F_{q^r}) 19761976 256880256880 127726664127726664 6815797040068157970400 3551927136773635519271367736

Point counts of the (virtual) curve

rr 11 22 33 44 55 66 77 88 99 1010
C(Fqr)C(\F_{q^r}) 2020 6464 488488 40644064 3308033080 261712261712 20971922097192 1677203216772032 134249240134249240 10737039841073703984

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over F212\F_{2^{12}}.

Endomorphism algebra over F23\F_{2^{3}}
The isogeny class factors as 1.8.e ×\times 2.8.h_y and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over F23\overline{\F}_{2^{3}}
The base change of AA to F212\F_{2^{12}} is 1.4096.ey ×\times 2.4096.agf_vki. The endomorphism algebra for each factor is:
Remainder of endomorphism lattice by field

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of F23\F_{2^{3}}.

SubfieldPrimitive Model
F2\F_{2}3.2.ab_a_e

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.8.al_ci_aia22(not in LMFDB)
3.8.ad_e_aq22(not in LMFDB)
3.8.d_e_q22(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.8.al_ci_aia22(not in LMFDB)
3.8.ad_e_aq22(not in LMFDB)
3.8.d_e_q22(not in LMFDB)
3.8.ah_bg_aei88(not in LMFDB)
3.8.h_bg_ei88(not in LMFDB)