Properties

Label 4.4.ag_s_abk_cq
Base field $\F_{2^{2}}$
Dimension $4$
$p$-rank $0$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $4$
L-polynomial:  $1 - 6 x + 18 x^{2} - 36 x^{3} + 68 x^{4} - 144 x^{5} + 288 x^{6} - 384 x^{7} + 256 x^{8}$
Frobenius angles:  $\pm0.126451355039$, $\pm0.206881978294$, $\pm0.373548644961$, $\pm0.706881978294$
Angle rank:  $1$ (numerical)
Number field:  8.0.12960000.1
Galois group:  $C_2^3$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable.

Newton polygon

$p$-rank:  $0$
Slopes:  $[1/4, 1/4, 1/4, 1/4, 3/4, 3/4, 3/4, 3/4]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $61$ $73261$ $16776769$ $5367174121$ $1125584940601$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-1$ $17$ $65$ $313$ $1049$ $4097$ $17009$ $66081$ $262145$ $1048577$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{24}}$.

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is 8.0.12960000.1.
Endomorphism algebra over $\overline{\F}_{2^{2}}$
The base change of $A$ to $\F_{2^{24}}$ is the simple isogeny class 4.16777216.acqy_ftmswm_alhdndwaa_mgnaawzgjjs and its endomorphism algebra is the division algebra of dimension 16 over \(\Q(\sqrt{-15}) \) with the following ramification data at primes above $2$, and unramified at all archimedean places:
$v$ ($ 2 $,\( \pi \)) ($ 2 $,\( \pi + 1 \))
$\operatorname{inv}_v$$1/4$$3/4$
where $\pi$ is a root of $x^{2} - x + 4$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.4.g_s_bk_cq$2$(not in LMFDB)
4.4.a_a_a_abc$3$(not in LMFDB)
4.4.g_s_bk_cq$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.4.g_s_bk_cq$2$(not in LMFDB)
4.4.a_a_a_abc$3$(not in LMFDB)
4.4.g_s_bk_cq$3$(not in LMFDB)
4.4.a_ac_a_am$8$(not in LMFDB)
4.4.a_c_a_am$8$(not in LMFDB)
4.4.a_ae_a_bk$24$(not in LMFDB)
4.4.a_e_a_bk$24$(not in LMFDB)