A Dirichlet character $\chi$ is primitive if its conductor is equal to its modulus; equivalently, $\chi$ is not induced by a Dirichlet character of smaller modulus.
Knowl status:
- Review status: reviewed
- Last edited by Pascal Molin on 2019-04-30 12:03:06
Referred to by:
History:
(expand/hide all)
- character.dirichlet
- character.dirichlet.basic_properties
- character.dirichlet.induce
- character.dirichlet.minimal
- cmf.inner_twist
- cmf.inner_twist_group
- cmf.inner_twist_proved
- cmf.oldspace
- cmf.self_twist
- cmf.twist
- cmf.twist_multiplicity
- columns.char_dirichlet.is_primitive
- columns.char_dirichlet.primitive_orbit
- columns.char_orbits.is_primitive
- columns.char_orbits.primitive_label
- lfunction.label
- mf.ellitpic.self_twist
- rcs.cande.lfunction
- lmfdb/characters/main.py (line 118)
- lmfdb/characters/main.py (line 251)
- lmfdb/characters/main.py (line 734)
- lmfdb/characters/templates/CharGroup.html (line 48)
- lmfdb/characters/templates/CharacterCommon.html (line 33)
- lmfdb/characters/templates/CharacterCommon.html (line 68)
- lmfdb/classical_modular_forms/main.py (line 837)
- lmfdb/classical_modular_forms/main.py (line 1537)
- 2019-04-30 12:03:06 by Pascal Molin (Reviewed)
- 2018-07-04 21:44:06 by Alina Bucur (Reviewed)