The discriminant of a Weierstrass equation over a field is an element of defined in terms of the Weierstrass coefficients. If the Weierstrass equation is then is given by a polynomial expression in , namely, where
Then if and only if the equation defines a smooth curve, in which case its projective closure gives an elliptic curve.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Cremona on 2021-01-07 09:43:10
Referred to by:
History:
(expand/hide all)
- ec.bad_reduction
- ec.discriminant_norm
- ec.invariants
- ec.j_invariant
- ec.local_minimal_model
- ec.period
- ec.q.234446.a1.bottom
- ec.q.discriminant
- ec.q.faltings_height
- ec.semi_global_minimal_model
- ec.weierstrass_coeffs
- lmfdb/ecnf/main.py (line 364)
- lmfdb/ecnf/templates/ecnf-curve.html (line 129)
- lmfdb/ecnf/templates/ecnf-curve.html (line 140)
- lmfdb/ecnf/templates/ecnf-curve.html (line 164)
- lmfdb/elliptic_curves/elliptic_curve.py (line 433)
- lmfdb/elliptic_curves/elliptic_curve.py (line 1300)
- lmfdb/elliptic_curves/templates/ec-curve.html (line 184)
- lmfdb/elliptic_curves/templates/ec-isoclass.html (line 23)
- lmfdb/genus2_curves/main.py (line 579)
- 2021-01-07 09:43:10 by John Cremona (Reviewed)
- 2018-12-13 05:48:28 by Andrew Sutherland (Reviewed)