show · st_group.symplectic_form all knowls · up · search:

A symplectic form on a vector space VV over a field kk is a non-degenerate alternating bilinear form ω ⁣:V×Vk\omega\colon V\times V\to k. This means that

  • if ω(u,v)=0\omega(u,v)=0 for all vVv\in V then u=0u=0 (non-degenerate);
  • ω(v,v)=0\omega(v,v)=0 for all vVv\in V (alternating);
  • ω(λu+v,w)=λω(u,v)+ω(v,w)\omega(\lambda u+v,w)=\lambda\omega(u,v)+\omega(v,w) and ω(u,λv+w)=ω(u)+λω(v,w)\omega(u,\lambda v+w)=\omega(u)+\lambda\omega(v,w) for all λk\lambda\in k, u,v,wVu,v,w\in V (bilinear).

A finite dimensional vector space admitting a symplectic form ω\omega necessarily has even dimension 2n2n, and in this case ω\omega can be represented by a matrix Ωk2n×2n\Omega\in k^{2n\times 2n} that satisfies uΩv=ω(u,w)u^\intercal\Omega v=\omega(u,w) for all u,vVu,v\in V. One can always choose a basis for VV so that Ω=[0InIn0], \Omega = \begin{bmatrix} 0 & I_n\\ -I_n & 0\end{bmatrix}, where InI_n denotes the n×nn\times n identity matrix.

Authors:
Knowl status:
  • Review status: beta
  • Last edited by Andrew Sutherland on 2021-05-06 21:19:00
Referred to by:
History: (expand/hide all) Differences (show/hide)