Defining polynomial
\(x^{18} + 30603 x^{6} - 101999799\) |
Invariants
Base field: | $\Q_{101}$ |
Degree $d$: | $18$ |
Ramification exponent $e$: | $6$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{101}(\sqrt{101\cdot 2})$ |
Root number: | $1$ |
$\card{ \Aut(K/\Q_{ 101 }) }$: | $6$ |
This field is not Galois over $\Q_{101}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{101}(\sqrt{101\cdot 2})$, 101.3.0.1, 101.3.2.1, 101.6.3.2, 101.6.5.2, 101.9.6.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 101.3.0.1 $\cong \Q_{101}(t)$ where $t$ is a root of \( x^{3} + 3 x + 99 \) |
Relative Eisenstein polynomial: | \( x^{6} + 101 t \) $\ \in\Q_{101}(t)[x]$ |
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_6\times S_3$ (as 18T6) |
Inertia group: | Intransitive group isomorphic to $C_6$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $6$ |
Tame degree: | $6$ |
Wild slopes: | None |
Galois mean slope: | $5/6$ |
Galois splitting model: | Not computed |