Properties

Label 101.18.15.2
Base \(\Q_{101}\)
Degree \(18\)
e \(6\)
f \(3\)
c \(15\)
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 30603 x^{6} - 101999799\) Copy content Toggle raw display

Invariants

Base field: $\Q_{101}$
Degree $d$: $18$
Ramification exponent $e$: $6$
Residue field degree $f$: $3$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{101}(\sqrt{101\cdot 2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 101 }) }$: $6$
This field is not Galois over $\Q_{101}.$
Visible slopes:None

Intermediate fields

$\Q_{101}(\sqrt{101\cdot 2})$, 101.3.0.1, 101.3.2.1, 101.6.3.2, 101.6.5.2, 101.9.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:101.3.0.1 $\cong \Q_{101}(t)$ where $t$ is a root of \( x^{3} + 3 x + 99 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 101 t \) $\ \in\Q_{101}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_6\times S_3$ (as 18T6)
Inertia group: Intransitive group isomorphic to $C_6$
Wild inertia group: $C_1$
Unramified degree: $6$
Tame degree: $6$
Wild slopes: None
Galois mean slope: $5/6$
Galois splitting model:Not computed