Properties

Label 17.18.15.1
Base \(\Q_{17}\)
Degree \(18\)
e \(6\)
f \(3\)
c \(15\)
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 6 x^{16} + 84 x^{15} + 15 x^{14} + 420 x^{13} + 3011 x^{12} + 840 x^{11} + 11367 x^{10} + 20020 x^{9} + 18411 x^{8} + 186480 x^{7} + 1998610 x^{6} + 147588 x^{5} + 1446885 x^{4} - 3479756 x^{3} + 734952 x^{2} + 1984584 x + 9683028\) Copy content Toggle raw display

Invariants

Base field: $\Q_{17}$
Degree $d$: $18$
Ramification exponent $e$: $6$
Residue field degree $f$: $3$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{17}(\sqrt{17})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 17 }) }$: $6$
This field is not Galois over $\Q_{17}.$
Visible slopes:None

Intermediate fields

$\Q_{17}(\sqrt{17})$, 17.3.0.1, 17.3.2.1, 17.6.3.1, 17.6.5.1, 17.9.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:17.3.0.1 $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{3} + x + 14 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 17 \) $\ \in\Q_{17}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_6\times S_3$ (as 18T6)
Inertia group: Intransitive group isomorphic to $C_6$
Wild inertia group: $C_1$
Unramified degree: $6$
Tame degree: $6$
Wild slopes: None
Galois mean slope: $5/6$
Galois splitting model:Not computed