Defining polynomial
\(x^{18} + 6 x^{16} + 84 x^{15} + 15 x^{14} + 420 x^{13} + 3011 x^{12} + 840 x^{11} + 11367 x^{10} + 20020 x^{9} + 18411 x^{8} + 186480 x^{7} + 1998610 x^{6} + 147588 x^{5} + 1446885 x^{4} - 3479756 x^{3} + 734952 x^{2} + 1984584 x + 9683028\) |
Invariants
Base field: | $\Q_{17}$ |
Degree $d$: | $18$ |
Ramification exponent $e$: | $6$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{17}(\sqrt{17})$ |
Root number: | $-1$ |
$\card{ \Aut(K/\Q_{ 17 }) }$: | $6$ |
This field is not Galois over $\Q_{17}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{17}(\sqrt{17})$, 17.3.0.1, 17.3.2.1, 17.6.3.1, 17.6.5.1, 17.9.6.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 17.3.0.1 $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{3} + x + 14 \) |
Relative Eisenstein polynomial: | \( x^{6} + 17 \) $\ \in\Q_{17}(t)[x]$ |
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_6\times S_3$ (as 18T6) |
Inertia group: | Intransitive group isomorphic to $C_6$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $6$ |
Tame degree: | $6$ |
Wild slopes: | None |
Galois mean slope: | $5/6$ |
Galois splitting model: | Not computed |