Properties

Label 19.8.1.0a1.1
Base \(\Q_{19}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + x^{4} + 12 x^{3} + 10 x^{2} + 3 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{19}$
Degree $d$: $8$
Ramification index $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{19}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{19})$ $=$$\Gal(K/\Q_{19})$: $C_8$
This field is Galois and abelian over $\Q_{19}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$16983563040 = (19^{ 8 } - 1)$

Intermediate fields

$\Q_{19}(\sqrt{2})$, 19.4.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:19.8.1.0a1.1 $\cong \Q_{19}(t)$ where $t$ is a root of \( x^{8} + x^{4} + 12 x^{3} + 10 x^{2} + 3 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 19 \) $\ \in\Q_{19}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $8$
Galois group: $C_8$ (as 8T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $8$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{8} - x^{7} + 3 x^{6} - 11 x^{5} + 44 x^{4} + 53 x^{3} + 153 x^{2} + 160 x + 59$