Properties

Label 3.5.3.15a6.1
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $C_3^5:C_{10}$ (as 15T44)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + 2 x + 1 )^{3} + 6 x^{2} ( x^{5} + 2 x + 1 ) + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification index $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{3}{2}]$
Visible Swan slopes:$[\frac{1}{2}]$
Means:$\langle\frac{1}{3}\rangle$
Rams:$(\frac{1}{2})$
Jump set:undefined
Roots of unity:$242 = (3^{ 5 } - 1)$

Intermediate fields

3.5.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.5.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(6 t^{4} + 3 t^{3} + 6 t^{2} + 6 t + 6\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (t^{2} + t)$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $2430$
Galois group: $C_3^5:C_{10}$ (as 15T44)
Inertia group: Intransitive group isomorphic to $C_3^4:S_3$
Wild inertia group: $C_3^5$
Galois unramified degree: $5$
Galois tame degree: $2$
Galois Artin slopes: $[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}]$
Galois Swan slopes: $[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$
Galois mean slope: $1.4958847736625513$
Galois splitting model: $x^{15} + 1869 x^{13} - 17266 x^{12} + 926757 x^{11} - 16040025 x^{10} + 134482738 x^{9} - 3933727020 x^{8} + 23949206868 x^{7} + 19597433231 x^{6} + 2611645781625 x^{5} + 15129099314571 x^{4} - 381939000130630 x^{3} - 893963245309308 x^{2} + 10575767455709529 x + 22563615112703831$ Copy content Toggle raw display