Defining polynomial
$( x^{5} + 2 x + 1 )^{3} + 6 x^{2} ( x^{5} + 2 x + 1 ) + 3$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{3}(\sqrt{3})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{3}{2}]$ |
Visible Swan slopes: | $[\frac{1}{2}]$ |
Means: | $\langle\frac{1}{3}\rangle$ |
Rams: | $(\frac{1}{2})$ |
Jump set: | undefined |
Roots of unity: | $242 = (3^{ 5 } - 1)$ |
Intermediate fields
3.5.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 3.5.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{5} + 2 x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + \left(6 t^{4} + 3 t^{3} + 6 t^{2} + 6 t + 6\right) x + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + (t^{2} + t)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[1, 0]$ |
Invariants of the Galois closure
Galois degree: | $2430$ |
Galois group: | $C_3^5:C_{10}$ (as 15T44) |
Inertia group: | Intransitive group isomorphic to $C_3^4:S_3$ |
Wild inertia group: | $C_3^5$ |
Galois unramified degree: | $5$ |
Galois tame degree: | $2$ |
Galois Artin slopes: | $[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}]$ |
Galois Swan slopes: | $[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
Galois mean slope: | $1.4958847736625513$ |
Galois splitting model: |
$x^{15} + 1869 x^{13} - 17266 x^{12} + 926757 x^{11} - 16040025 x^{10} + 134482738 x^{9} - 3933727020 x^{8} + 23949206868 x^{7} + 19597433231 x^{6} + 2611645781625 x^{5} + 15129099314571 x^{4} - 381939000130630 x^{3} - 893963245309308 x^{2} + 10575767455709529 x + 22563615112703831$
|