Properties

Label 3.4.2.1
Base \(\Q_{3}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)
Galois group $C_2^2$ (as 4T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $4$
Ramification exponent $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 3 }) }$: $4$
This field is Galois and abelian over $\Q_{3}.$
Visible slopes:None

Intermediate fields

$\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, $\Q_{3}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $C_2^2$ (as 4T2)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Unramified degree: $2$
Tame degree: $2$
Wild slopes: None
Galois mean slope: $1/2$
Galois splitting model: $x^{4} + 9 x^{2} + 36$ Copy content Toggle raw display