Defining polynomial
$( x^{3} + 2 x + 1 )^{2} + 3 x$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $6$ |
Ramification index $e$: | $2$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $3$ |
Discriminant root field: | $\Q_{3}(\sqrt{3})$ |
Root number: | $i$ |
$\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: | $C_6$ |
This field is Galois and abelian over $\Q_{3}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $26 = (3^{ 3 } - 1)$ |
Intermediate fields
$\Q_{3}(\sqrt{3})$, 3.3.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 3.3.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{3} + 2 x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + 3 t \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + 2$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $6$ |
Galois group: | $C_6$ (as 6T1) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $3$ |
Galois tame degree: | $2$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[]$ |
Galois mean slope: | $0.5$ |
Galois splitting model: | $x^{6} - 2 x^{5} - 12 x^{4} + 18 x^{3} + 23 x^{2} - 16 x + 1$ |