Properties

Label 3.3.2.3a1.1
Base \(\Q_{3}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 2 x + 1 )^{2} + 3 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification index $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $i$
$\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: $C_6$
This field is Galois and abelian over $\Q_{3}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$26 = (3^{ 3 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.3.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 3 t \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $6$
Galois group: $C_6$ (as 6T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Galois unramified degree: $3$
Galois tame degree: $2$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.5$
Galois splitting model:$x^{6} - 2 x^{5} - 12 x^{4} + 18 x^{3} + 23 x^{2} - 16 x + 1$