Properties

Label 37.12.8.3
Base \(\Q_{37}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} - 444 x^{9} + 54760 x^{6} + 27960456 x^{3} + 7496644\) Copy content Toggle raw display

Invariants

Base field: $\Q_{37}$
Degree $d$: $12$
Ramification exponent $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{37}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 37 }) }$: $12$
This field is Galois and abelian over $\Q_{37}.$
Visible slopes:None

Intermediate fields

$\Q_{37}(\sqrt{2})$, 37.3.2.3, 37.4.0.1, 37.6.4.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:37.4.0.1 $\cong \Q_{37}(t)$ where $t$ is a root of \( x^{4} + 6 x^{2} + 24 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 37 t^{2} \) $\ \in\Q_{37}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_{12}$ (as 12T1)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Unramified degree: $4$
Tame degree: $3$
Wild slopes: None
Galois mean slope: $2/3$
Galois splitting model:Not computed