Properties

Label 5.6.2.6a1.2
Base Q5\Q_{5}
Degree 1212
e 22
f 66
c 66
Galois group C6×C2C_6\times C_2 (as 12T2)

Related objects

Downloads

Learn more

Defining polynomial

(x6+x4+4x3+x2+2)2+5( x^{6} + x^{4} + 4 x^{3} + x^{2} + 2 )^{2} + 5 Copy content Toggle raw display

Invariants

Base field: Q5\Q_{5}
Degree dd: 1212
Ramification index ee: 22
Residue field degree ff: 66
Discriminant exponent cc: 66
Discriminant root field: Q5\Q_{5}
Root number: 1-1
Aut(K/Q5)\Aut(K/\Q_{5}) ==Gal(K/Q5)\Gal(K/\Q_{5}): C2×C6C_2\times C_6
This field is Galois and abelian over Q5.\Q_{5}.
Visible Artin slopes:[ ][\ ]
Visible Swan slopes:[ ][\ ]
Means: \langle\ \rangle
Rams:( )(\ )
Jump set:undefined
Roots of unity:15624=(561)15624 = (5^{ 6 } - 1)

Intermediate fields

Q5(2)\Q_{5}(\sqrt{2}), Q5(5)\Q_{5}(\sqrt{5}), Q5(52)\Q_{5}(\sqrt{5\cdot 2}), 5.3.1.0a1.1, 5.2.2.2a1.2, 5.6.1.0a1.1, 5.3.2.3a1.2, 5.3.2.3a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.6.1.0a1.1 Q5(t)\cong \Q_{5}(t) where tt is a root of x6+x4+4x3+x2+2 x^{6} + x^{4} + 4 x^{3} + x^{2} + 2 Copy content Toggle raw display
Relative Eisenstein polynomial: x2+5 x^{2} + 5  Q5(t)[x]\ \in\Q_{5}(t)[x] Copy content Toggle raw display

Ramification polygon

Residual polynomials:z+2z + 2
Associated inertia:11
Indices of inseparability:[0][0]

Invariants of the Galois closure

Galois degree: 1212
Galois group: C2×C6C_2\times C_6 (as 12T2)
Inertia group: Intransitive group isomorphic to C2C_2
Wild inertia group: C1C_1
Galois unramified degree: 66
Galois tame degree: 22
Galois Artin slopes: [ ][\ ]
Galois Swan slopes: [ ][\ ]
Galois mean slope: 0.50.5
Galois splitting model:x12x11+2x103x9+5x88x7+13x6+8x5+5x4+3x3+2x2+x+1x^{12} - x^{11} + 2 x^{10} - 3 x^{9} + 5 x^{8} - 8 x^{7} + 13 x^{6} + 8 x^{5} + 5 x^{4} + 3 x^{3} + 2 x^{2} + x + 1