Properties

Label 5.8.6.4
Base \(\Q_{5}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} - 20 x^{4} + 50\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 5 }) }$: $8$
This field is Galois and abelian over $\Q_{5}.$
Visible slopes:None

Intermediate fields

$\Q_{5}(\sqrt{2})$, 5.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 5 t \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $C_8$ (as 8T1)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Unramified degree: $2$
Tame degree: $4$
Wild slopes: None
Galois mean slope: $3/4$
Galois splitting model:$x^{8} - x^{7} + 10 x^{6} + 6 x^{5} + 49 x^{4} - 129 x^{3} + 500 x^{2} + 2044 x + 1616$