Properties

Label 53.3.5.12a1.1
Base Q53\Q_{53}
Degree 1515
e 55
f 33
c 1212
Galois group F5×C3F_5\times C_3 (as 15T8)

Related objects

Downloads

Learn more

Defining polynomial

(x3+3x+51)5+53( x^{3} + 3 x + 51 )^{5} + 53 Copy content Toggle raw display

Invariants

Base field: Q53\Q_{53}
Degree dd: 1515
Ramification index ee: 55
Residue field degree ff: 33
Discriminant exponent cc: 1212
Discriminant root field: Q53(2)\Q_{53}(\sqrt{2})
Root number: 11
Aut(K/Q53)\Aut(K/\Q_{53}): C3C_3
This field is not Galois over Q53.\Q_{53}.
Visible Artin slopes:[ ][\ ]
Visible Swan slopes:[ ][\ ]
Means: \langle\ \rangle
Rams:( )(\ )
Jump set:undefined
Roots of unity:148876=(5331)148876 = (53^{ 3 } - 1)

Intermediate fields

53.3.1.0a1.1, 53.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:53.3.1.0a1.1 Q53(t)\cong \Q_{53}(t) where tt is a root of x3+3x+51 x^{3} + 3 x + 51 Copy content Toggle raw display
Relative Eisenstein polynomial: x5+53 x^{5} + 53  Q53(t)[x]\ \in\Q_{53}(t)[x] Copy content Toggle raw display

Ramification polygon

Residual polynomials:z4+5z3+10z2+10z+5z^4 + 5 z^3 + 10 z^2 + 10 z + 5
Associated inertia:44
Indices of inseparability:[0][0]

Invariants of the Galois closure

Galois degree: 6060
Galois group: C3×F5C_3\times F_5 (as 15T8)
Inertia group: Intransitive group isomorphic to C5C_5
Wild inertia group: C1C_1
Galois unramified degree: 1212
Galois tame degree: 55
Galois Artin slopes: [ ][\ ]
Galois Swan slopes: [ ][\ ]
Galois mean slope: 0.80.8
Galois splitting model:not computed