Learn more

Refine search


Results (47 matches)

  displayed columns for results
Label Polynomial pp ee ff cc Galois group uu tt Visible slopes Slope content Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia
3.7.6.1 x7+3x^{7} + 3 33 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+1t + 1 x7+3x^{7} + 3 [0][0] [6][6]
5.7.6.1 x7+5x^{7} + 5 55 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+3t + 3 x7+5x^{7} + 5 [0][0] [6][6]
7.7.7.1 x7+42x+7x^{7} + 42 x + 7 77 77 11 77 F7F_7 (as 7T4) 11 66 [7/6][7/6] [7/6]6[7/6]_{6} t+4t + 4 x7+42x+7x^{7} + 42 x + 7 [1,0][1, 0] [1][1]
7.7.7.2 x7+21x+7x^{7} + 21 x + 7 77 77 11 77 F7F_7 (as 7T4) 11 66 [7/6][7/6] [7/6]6[7/6]_{6} t+4t + 4 x7+21x+7x^{7} + 21 x + 7 [1,0][1, 0] [1][1]
7.7.7.3 x7+35x+7x^{7} + 35 x + 7 77 77 11 77 F7F_7 (as 7T4) 11 66 [7/6][7/6] [7/6]6[7/6]_{6} t+4t + 4 x7+35x+7x^{7} + 35 x + 7 [1,0][1, 0] [1][1]
7.7.7.4 x7+14x+7x^{7} + 14 x + 7 77 77 11 77 F7F_7 (as 7T4) 11 66 [7/6][7/6] [7/6]6[7/6]_{6} t+4t + 4 x7+14x+7x^{7} + 14 x + 7 [1,0][1, 0] [1][1]
7.7.7.5 x7+7x+7x^{7} + 7 x + 7 77 77 11 77 F7F_7 (as 7T4) 11 66 [7/6][7/6] [7/6]6[7/6]_{6} t+4t + 4 x7+7x+7x^{7} + 7 x + 7 [1,0][1, 0] [1][1]
7.7.7.6 x7+28x+7x^{7} + 28 x + 7 77 77 11 77 F7F_7 (as 7T4) 11 66 [7/6][7/6] [7/6]6[7/6]_{6} t+4t + 4 x7+28x+7x^{7} + 28 x + 7 [1,0][1, 0] [1][1]
7.7.8.4 x7+21x2+7x^{7} + 21 x^{2} + 7 77 77 11 88 F7F_7 (as 7T4) 22 33 [4/3][4/3] [4/3]32[4/3]_{3}^{2} t+4t + 4 x7+21x2+7x^{7} + 21 x^{2} + 7 [2,0][2, 0] [2][2]
7.7.8.5 x7+42x2+7x^{7} + 42 x^{2} + 7 77 77 11 88 F7F_7 (as 7T4) 22 33 [4/3][4/3] [4/3]32[4/3]_{3}^{2} t+4t + 4 x7+42x2+7x^{7} + 42 x^{2} + 7 [2,0][2, 0] [2][2]
7.7.8.6 x7+35x2+7x^{7} + 35 x^{2} + 7 77 77 11 88 F7F_7 (as 7T4) 22 33 [4/3][4/3] [4/3]32[4/3]_{3}^{2} t+4t + 4 x7+35x2+7x^{7} + 35 x^{2} + 7 [2,0][2, 0] [2][2]
7.7.9.2 x7+7x3+7x^{7} + 7 x^{3} + 7 77 77 11 99 F7F_7 (as 7T4) 33 22 [3/2][3/2] [3/2]23[3/2]_{2}^{3} t+4t + 4 x7+7x3+7x^{7} + 7 x^{3} + 7 [3,0][3, 0] [3][3]
7.7.9.3 x7+28x3+7x^{7} + 28 x^{3} + 7 77 77 11 99 F7F_7 (as 7T4) 33 22 [3/2][3/2] [3/2]23[3/2]_{2}^{3} t+4t + 4 x7+28x3+7x^{7} + 28 x^{3} + 7 [3,0][3, 0] [3][3]
7.7.9.5 x7+42x3+7x^{7} + 42 x^{3} + 7 77 77 11 99 F7F_7 (as 7T4) 33 22 [3/2][3/2] [3/2]23[3/2]_{2}^{3} t+4t + 4 x7+42x3+7x^{7} + 42 x^{3} + 7 [3,0][3, 0] [3][3]
7.7.9.6 x7+21x3+7x^{7} + 21 x^{3} + 7 77 77 11 99 F7F_7 (as 7T4) 33 22 [3/2][3/2] [3/2]23[3/2]_{2}^{3} t+4t + 4 x7+21x3+7x^{7} + 21 x^{3} + 7 [3,0][3, 0] [3][3]
7.7.10.4 x7+21x4+7x^{7} + 21 x^{4} + 7 77 77 11 1010 F7F_7 (as 7T4) 22 33 [5/3][5/3] [5/3]32[5/3]_{3}^{2} t+4t + 4 x7+21x4+7x^{7} + 21 x^{4} + 7 [4,0][4, 0] [2][2]
7.7.10.5 x7+35x4+7x^{7} + 35 x^{4} + 7 77 77 11 1010 F7F_7 (as 7T4) 22 33 [5/3][5/3] [5/3]32[5/3]_{3}^{2} t+4t + 4 x7+35x4+7x^{7} + 35 x^{4} + 7 [4,0][4, 0] [2][2]
7.7.10.6 x7+42x4+7x^{7} + 42 x^{4} + 7 77 77 11 1010 F7F_7 (as 7T4) 22 33 [5/3][5/3] [5/3]32[5/3]_{3}^{2} t+4t + 4 x7+42x4+7x^{7} + 42 x^{4} + 7 [4,0][4, 0] [2][2]
7.7.11.1 x7+7x5+7x^{7} + 7 x^{5} + 7 77 77 11 1111 F7F_7 (as 7T4) 11 66 [11/6][11/6] [11/6]6[11/6]_{6} t+4t + 4 x7+7x5+7x^{7} + 7 x^{5} + 7 [5,0][5, 0] [1][1]
7.7.11.2 x7+28x5+7x^{7} + 28 x^{5} + 7 77 77 11 1111 F7F_7 (as 7T4) 11 66 [11/6][11/6] [11/6]6[11/6]_{6} t+4t + 4 x7+28x5+7x^{7} + 28 x^{5} + 7 [5,0][5, 0] [1][1]
7.7.11.3 x7+14x5+7x^{7} + 14 x^{5} + 7 77 77 11 1111 F7F_7 (as 7T4) 11 66 [11/6][11/6] [11/6]6[11/6]_{6} t+4t + 4 x7+14x5+7x^{7} + 14 x^{5} + 7 [5,0][5, 0] [1][1]
7.7.11.4 x7+21x5+7x^{7} + 21 x^{5} + 7 77 77 11 1111 F7F_7 (as 7T4) 11 66 [11/6][11/6] [11/6]6[11/6]_{6} t+4t + 4 x7+21x5+7x^{7} + 21 x^{5} + 7 [5,0][5, 0] [1][1]
7.7.11.5 x7+35x5+7x^{7} + 35 x^{5} + 7 77 77 11 1111 F7F_7 (as 7T4) 11 66 [11/6][11/6] [11/6]6[11/6]_{6} t+4t + 4 x7+35x5+7x^{7} + 35 x^{5} + 7 [5,0][5, 0] [1][1]
7.7.11.6 x7+42x5+7x^{7} + 42 x^{5} + 7 77 77 11 1111 F7F_7 (as 7T4) 11 66 [11/6][11/6] [11/6]6[11/6]_{6} t+4t + 4 x7+42x5+7x^{7} + 42 x^{5} + 7 [5,0][5, 0] [1][1]
7.7.12.11 x7+14x6+7x^{7} + 14 x^{6} + 7 77 77 11 1212 F7F_7 (as 7T4) 66 11 [2][2] [2]6[2]^{6} t+4t + 4 x7+14x6+7x^{7} + 14 x^{6} + 7 [6,0][6, 0] [6][6]
7.7.12.12 x7+28x6+7x^{7} + 28 x^{6} + 7 77 77 11 1212 F7F_7 (as 7T4) 66 11 [2][2] [2]6[2]^{6} t+4t + 4 x7+28x6+7x^{7} + 28 x^{6} + 7 [6,0][6, 0] [6][6]
7.7.13.1 x7+7x^{7} + 7 77 77 11 1313 F7F_7 (as 7T4) 11 66 [13/6][13/6] [13/6]6[13/6]_{6} t+4t + 4 x7+7x^{7} + 7 [7,0][7, 0] [1][1]
7.7.13.2 x7+49x2+98x+7x^{7} + 49 x^{2} + 98 x + 7 77 77 11 1313 F7F_7 (as 7T4) 11 66 [13/6][13/6] [13/6]6[13/6]_{6} t+4t + 4 x7+49x2+98x+7x^{7} + 49 x^{2} + 98 x + 7 [7,0][7, 0] [1][1]
7.7.13.3 x7+98x2+294x+7x^{7} + 98 x^{2} + 294 x + 7 77 77 11 1313 F7F_7 (as 7T4) 11 66 [13/6][13/6] [13/6]6[13/6]_{6} t+4t + 4 x7+98x2+294x+7x^{7} + 98 x^{2} + 294 x + 7 [7,0][7, 0] [1][1]
7.7.13.4 x7+196x2+147x+7x^{7} + 196 x^{2} + 147 x + 7 77 77 11 1313 F7F_7 (as 7T4) 11 66 [13/6][13/6] [13/6]6[13/6]_{6} t+4t + 4 x7+196x2+147x+7x^{7} + 196 x^{2} + 147 x + 7 [7,0][7, 0] [1][1]
7.7.13.5 x7+98x2+49x+7x^{7} + 98 x^{2} + 49 x + 7 77 77 11 1313 F7F_7 (as 7T4) 11 66 [13/6][13/6] [13/6]6[13/6]_{6} t+4t + 4 x7+98x2+49x+7x^{7} + 98 x^{2} + 49 x + 7 [7,0][7, 0] [1][1]
7.7.13.6 x7+196x2+196x+7x^{7} + 196 x^{2} + 196 x + 7 77 77 11 1313 F7F_7 (as 7T4) 11 66 [13/6][13/6] [13/6]6[13/6]_{6} t+4t + 4 x7+196x2+196x+7x^{7} + 196 x^{2} + 196 x + 7 [7,0][7, 0] [1][1]
7.7.13.7 x7+49x2+245x+7x^{7} + 49 x^{2} + 245 x + 7 77 77 11 1313 F7F_7 (as 7T4) 11 66 [13/6][13/6] [13/6]6[13/6]_{6} t+4t + 4 x7+49x2+245x+7x^{7} + 49 x^{2} + 245 x + 7 [7,0][7, 0] [1][1]
17.7.6.1 x7+17x^{7} + 17 1717 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+14t + 14 x7+17x^{7} + 17 [0][0] [6][6]
19.7.6.1 x7+19x^{7} + 19 1919 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+17t + 17 x7+19x^{7} + 19 [0][0] [6][6]
31.7.6.1 x7+31x^{7} + 31 3131 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+28t + 28 x7+31x^{7} + 31 [0][0] [6][6]
47.7.6.1 x7+47x^{7} + 47 4747 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+42t + 42 x7+47x^{7} + 47 [0][0] [6][6]
59.7.6.1 x7+59x^{7} + 59 5959 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+57t + 57 x7+59x^{7} + 59 [0][0] [6][6]
61.7.6.1 x7+61x^{7} + 61 6161 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+59t + 59 x7+61x^{7} + 61 [0][0] [6][6]
73.7.6.1 x7+73x^{7} + 73 7373 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+68t + 68 x7+73x^{7} + 73 [0][0] [6][6]
89.7.6.1 x7+89x^{7} + 89 8989 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+86t + 86 x7+89x^{7} + 89 [0][0] [6][6]
101.7.6.1 x7+101x^{7} + 101 101101 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+99t + 99 x7+101x^{7} + 101 [0][0] [6][6]
103.7.6.1 x7+103x^{7} + 103 103103 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+98t + 98 x7+103x^{7} + 103 [0][0] [6][6]
131.7.6.1 x7+131x^{7} + 131 131131 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+129t + 129 x7+131x^{7} + 131 [0][0] [6][6]
157.7.6.1 x7+157x^{7} + 157 157157 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+152t + 152 x7+157x^{7} + 157 [0][0] [6][6]
173.7.6.1 x7+173x^{7} + 173 173173 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+171t + 171 x7+173x^{7} + 173 [0][0] [6][6]
199.7.6.1 x7+199x^{7} + 199 199199 77 11 66 F7F_7 (as 7T4) 66 77 [ ][\ ] [ ]76[\ ]_{7}^{6} t+196t + 196 x7+199x^{7} + 199 [0][0] [6][6]
  displayed columns for results