Properties

Label 1.728.6t1.c.b
Dimension $1$
Group $C_6$
Conductor $728$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(728\)\(\medspace = 2^{3} \cdot 7 \cdot 13 \)
Artin field: Galois closure of 6.0.35110380032.4
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{728}(627,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} - 53x^{4} - 2x^{3} + 970x^{2} + 2056x + 2673 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: \( x^{2} + 60x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 55 a + 30 + \left(58 a + 13\right)\cdot 61 + \left(46 a + 32\right)\cdot 61^{2} + \left(60 a + 52\right)\cdot 61^{3} + \left(38 a + 28\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 6 a + 15 + \left(2 a + 11\right)\cdot 61 + \left(14 a + 59\right)\cdot 61^{2} + 58\cdot 61^{3} + \left(22 a + 50\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 24 + \left(2 a + 17\right)\cdot 61 + \left(14 a + 20\right)\cdot 61^{2} + 5\cdot 61^{3} + \left(22 a + 7\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 a + 14 + \left(2 a + 38\right)\cdot 61 + \left(14 a + 24\right)\cdot 61^{2} + 17\cdot 61^{3} + \left(22 a + 31\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 55 a + 21 + \left(58 a + 7\right)\cdot 61 + \left(46 a + 10\right)\cdot 61^{2} + \left(60 a + 45\right)\cdot 61^{3} + \left(38 a + 11\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 55 a + 20 + \left(58 a + 34\right)\cdot 61 + \left(46 a + 36\right)\cdot 61^{2} + \left(60 a + 3\right)\cdot 61^{3} + \left(38 a + 53\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(1,4,5,3,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,3)(2,5)(4,6)$$-1$
$1$$3$$(1,5,6)(2,4,3)$$-\zeta_{3} - 1$
$1$$3$$(1,6,5)(2,3,4)$$\zeta_{3}$
$1$$6$$(1,4,5,3,6,2)$$-\zeta_{3}$
$1$$6$$(1,2,6,3,5,4)$$\zeta_{3} + 1$