Properties

Label 2.1596.12t18.b.b
Dimension $2$
Group $C_6\times S_3$
Conductor $1596$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_6\times S_3$
Conductor: \(1596\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 19 \)
Artin stem field: Galois closure of 12.0.45781510778228736.1
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Determinant: 1.1596.6t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.30324.1

Defining polynomial

$f(x)$$=$ \( x^{12} - 2 x^{11} + 6 x^{10} - 14 x^{9} + 39 x^{8} - 72 x^{7} + 160 x^{6} - 218 x^{5} + 338 x^{4} + \cdots + 109 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{6} + 10x^{3} + 11x^{2} + 11x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 5 a^{5} + 7 a^{4} + 10 a^{3} + 5 a^{2} + 4 a + 8 + \left(7 a^{5} + 9 a^{4} + 11 a^{3} + 3 a^{2} + 5 a + 6\right)\cdot 13 + \left(8 a^{5} + 6 a^{4} + 9 a^{3} + 9 a^{2} + 11 a + 9\right)\cdot 13^{2} + \left(11 a^{5} + 12 a^{4} + 4 a^{3} + 12 a^{2} + 7 a + 8\right)\cdot 13^{3} + \left(10 a^{5} + 10 a^{4} + 12 a^{3} + 10 a^{2} + 2 a + 1\right)\cdot 13^{4} + \left(5 a^{5} + 9 a^{4} + 5 a^{3} + 3 a^{2} + 4 a + 1\right)\cdot 13^{5} + \left(7 a^{5} + 2 a^{4} + 4 a^{3} + 2 a^{2} + 9 a\right)\cdot 13^{6} + \left(3 a^{4} + 7 a^{3} + 12 a^{2} + 6 a + 12\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 a^{5} + 7 a^{4} + 12 a^{3} + 5 a^{2} + 12 a + 4 + \left(8 a^{5} + 4 a^{4} + a^{3} + a^{2} + 8 a + 4\right)\cdot 13 + \left(3 a^{5} + 6 a^{4} + 2 a^{3} + 5 a^{2} + 11 a + 9\right)\cdot 13^{2} + \left(12 a^{4} + 7 a^{3} + 3 a^{2} + 8 a\right)\cdot 13^{3} + \left(11 a^{4} + 9 a^{3} + 9 a^{2} + 3 a + 10\right)\cdot 13^{4} + \left(11 a^{5} + 4 a^{4} + 12 a^{3} + 11 a^{2} + 2 a\right)\cdot 13^{5} + \left(9 a^{5} + 7 a^{4} + 11 a^{3} + 5 a^{2} + 12 a + 9\right)\cdot 13^{6} + \left(8 a^{5} + 3 a^{4} + 4 a^{3} + a^{2} + 7 a + 1\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 a^{5} + 9 a^{4} + 12 a^{3} + 11 a^{2} + 11 a + 1 + \left(8 a^{5} + 6 a^{4} + a^{3} + 3 a^{2} + 12 a + 4\right)\cdot 13 + \left(6 a^{5} + 6 a^{4} + 3 a^{3} + 5 a + 2\right)\cdot 13^{2} + \left(3 a^{5} + 12 a^{4} + 7 a^{3} + 12 a^{2} + a + 9\right)\cdot 13^{3} + \left(2 a^{5} + 3 a^{4} + a^{3} + 2 a + 5\right)\cdot 13^{4} + \left(7 a^{5} + 5 a^{4} + 2 a^{3} + 2 a^{2} + 6\right)\cdot 13^{5} + \left(7 a^{5} + 10 a^{4} + 9 a^{3} + 7 a^{2} + 6 a\right)\cdot 13^{6} + \left(4 a^{5} + 8 a^{4} + 2 a^{3} + 6 a^{2} + 4 a + 8\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 11 a^{5} + 5 a^{4} + 12 a^{3} + 4 a^{2} + 10 a + 12 + \left(5 a^{5} + 5 a^{4} + 2 a^{3} + 10 a + 2\right)\cdot 13 + \left(11 a^{5} + a^{4} + 9 a^{3} + 12 a^{2} + 10 a + 2\right)\cdot 13^{2} + \left(3 a^{5} + 4 a^{4} + 9 a^{3} + 9 a^{2} + 4 a + 5\right)\cdot 13^{3} + \left(7 a^{5} + 11 a^{3} + 9 a^{2} + 4\right)\cdot 13^{4} + \left(10 a^{5} + a^{4} + 8 a^{3} + 6 a^{2} + 5 a + 6\right)\cdot 13^{5} + \left(6 a^{5} + 5 a^{4} + 8 a^{3} + 8 a^{2} + 4 a + 2\right)\cdot 13^{6} + \left(8 a^{5} + 12 a^{4} + 10 a^{2} + 8 a + 9\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 a^{5} + a^{4} + 9 a^{3} + 8 a^{2} + 11 a + 10 + \left(9 a^{5} + 4 a^{4} + 12 a^{3} + 10 a^{2} + 5 a + 3\right)\cdot 13 + \left(7 a^{5} + 5 a^{4} + 10 a^{3} + 3 a^{2} + 9 a + 1\right)\cdot 13^{2} + \left(a^{5} + 4 a^{4} + 11 a^{3} + 3 a^{2} + 10 a + 10\right)\cdot 13^{3} + \left(2 a^{5} + 11 a^{4} + 7 a^{3} + 11 a^{2} + 6 a + 7\right)\cdot 13^{4} + \left(6 a^{5} + 9 a^{3} + 3 a^{2} + 12 a + 9\right)\cdot 13^{5} + \left(3 a^{5} + 3 a^{4} + 10 a^{2} + 7 a + 12\right)\cdot 13^{6} + \left(11 a^{4} + 12 a^{3} + 4 a^{2} + 11 a + 7\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 2 a^{5} + 8 a^{4} + a^{2} + 2 a + 2 + \left(7 a^{5} + 2 a^{4} + 10 a^{3} + 11 a^{2} + 4 a + 6\right)\cdot 13 + \left(5 a^{5} + 9 a^{4} + 8 a^{3} + a + 9\right)\cdot 13^{2} + \left(5 a^{5} + 5 a^{3} + 11 a^{2} + 9 a + 6\right)\cdot 13^{3} + \left(5 a^{3} + 6 a^{2} + 6 a + 7\right)\cdot 13^{4} + \left(12 a^{5} + 8 a^{4} + 8 a^{3} + 12 a^{2} + 10 a + 3\right)\cdot 13^{5} + \left(2 a^{5} + 7 a^{4} + 2 a^{3} + 2 a^{2} + 7 a + 7\right)\cdot 13^{6} + \left(9 a^{5} + 6 a^{4} + 12 a^{3} + 3 a^{2} + a + 2\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 10 a^{5} + 4 a^{4} + 6 a^{3} + 10 a^{2} + 8 a + 1 + \left(8 a^{5} + 12 a^{4} + 12 a^{3} + 5 a^{2} + 7 a + 4\right)\cdot 13 + \left(8 a^{5} + 9 a^{4} + 9 a^{3} + 4 a^{2} + 3 a + 8\right)\cdot 13^{2} + \left(5 a^{5} + 10 a^{4} + 9 a^{3} + 2 a^{2} + 10 a\right)\cdot 13^{3} + \left(11 a^{5} + 12 a^{4} + 3 a^{3} + 2 a^{2} + 12 a + 1\right)\cdot 13^{4} + \left(8 a^{5} + 9 a^{3} + 4 a^{2} + 11 a + 11\right)\cdot 13^{5} + \left(7 a^{5} + 7 a^{4} + 7 a^{3} + a^{2} + 6 a + 6\right)\cdot 13^{6} + \left(4 a^{5} + 6 a^{3} + 11 a^{2} + 7 a + 12\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 3 a^{5} + 10 a^{3} + a^{2} + 11 a + 12 + \left(12 a^{5} + 9 a^{4} + 6 a^{3} + 9 a^{2} + 4 a + 6\right)\cdot 13 + \left(8 a^{5} + 3 a^{4} + a^{3} + 4 a^{2} + 8 a + 11\right)\cdot 13^{2} + \left(4 a^{5} + 2 a^{4} + 2 a^{3} + 7 a^{2} + 2 a + 3\right)\cdot 13^{3} + \left(11 a^{5} + 11 a^{4} + 11 a^{3} + 10 a^{2} + 4 a + 12\right)\cdot 13^{4} + \left(7 a^{5} + 4 a^{4} + 7 a^{3} + 6 a + 7\right)\cdot 13^{5} + \left(4 a^{4} + 12 a^{2} + 6 a + 3\right)\cdot 13^{6} + \left(7 a^{5} + 11 a^{4} + 2 a^{3} + 10 a^{2} + 12 a + 11\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 7 a^{5} + 12 a^{4} + 2 a^{3} + 7 a^{2} + 6 a + 10 + \left(6 a^{5} + 9 a^{4} + 4 a^{3} + 2 a^{2} + 12 a + 4\right)\cdot 13 + \left(2 a^{5} + 5 a^{4} + 12 a^{3} + 2 a^{2} + 10 a + 4\right)\cdot 13^{2} + \left(a^{4} + 7 a^{3} + a^{2} + 7 a + 7\right)\cdot 13^{3} + \left(3 a^{5} + a^{4} + 5 a^{2} + 8\right)\cdot 13^{4} + \left(11 a^{5} + a^{3} + 3 a^{2} + a + 8\right)\cdot 13^{5} + \left(5 a^{5} + 7 a^{4} + 5 a^{3} + 10 a^{2} + 11 a + 4\right)\cdot 13^{6} + \left(11 a^{4} + 2 a^{3} + 9 a^{2} + 12 a + 10\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 11 a^{5} + 11 a^{4} + 10 a^{3} + 4 a^{2} + 5 a + 7 + \left(10 a^{5} + 6 a^{4} + 9 a^{3} + 8 a\right)\cdot 13 + \left(4 a^{5} + 2 a^{4} + 8 a^{3} + 12 a^{2} + 5 a + 8\right)\cdot 13^{2} + \left(8 a^{5} + 3 a^{4} + a^{3} + 7 a^{2} + 8 a + 1\right)\cdot 13^{3} + \left(a^{5} + 8 a^{4} + 5 a^{2} + 8 a + 11\right)\cdot 13^{4} + \left(7 a^{5} + 2 a^{4} + 6 a^{3} + 3 a^{2} + a + 6\right)\cdot 13^{5} + \left(3 a^{5} + 6 a^{4} + 3 a^{3} + 2 a^{2} + 7 a + 4\right)\cdot 13^{6} + \left(12 a^{5} + 5 a^{4} + 12 a^{3} + 11 a^{2} + 6 a + 5\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 11 a^{5} + 9 a^{4} + 3 a^{2} + 5 a + 3 + \left(10 a^{5} + 3 a^{4} + 3 a^{3} + 11 a^{2} + 4\right)\cdot 13 + \left(12 a^{5} + 8 a^{4} + 5 a^{2} + 12 a + 7\right)\cdot 13^{2} + \left(11 a^{5} + 5 a^{4} + a^{3} + 10 a^{2} + 11 a + 12\right)\cdot 13^{3} + \left(5 a^{5} + 5 a^{4} + 11 a^{3} + 8 a^{2} + 12 a + 12\right)\cdot 13^{4} + \left(8 a^{5} + 9 a^{4} + 2 a^{3} + 2 a^{2} + 6 a\right)\cdot 13^{5} + \left(11 a^{5} + 9 a^{4} + a^{3} + 6 a^{2} + 11\right)\cdot 13^{6} + \left(8 a^{5} + 11 a^{4} + 11 a^{3} + 3 a^{2} + 4 a + 5\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 8 a^{5} + 5 a^{4} + 8 a^{3} + 6 a^{2} + 6 a + 10 + \left(7 a^{5} + 3 a^{4} + 5 a^{2} + 9 a + 3\right)\cdot 13 + \left(9 a^{5} + 12 a^{4} + a^{3} + 4 a^{2} + 12 a + 4\right)\cdot 13^{2} + \left(7 a^{5} + 7 a^{4} + 9 a^{3} + 9 a^{2} + 6 a + 11\right)\cdot 13^{3} + \left(8 a^{5} + 2 a^{3} + 9 a^{2} + 3 a + 7\right)\cdot 13^{4} + \left(7 a^{5} + 4 a^{4} + 3 a^{3} + 9 a^{2} + 2 a + 1\right)\cdot 13^{5} + \left(10 a^{5} + 7 a^{4} + 9 a^{3} + 8 a^{2} + 11 a + 2\right)\cdot 13^{6} + \left(12 a^{5} + 4 a^{4} + 3 a^{3} + 5 a^{2} + 6 a + 4\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(2,3,7)(10,11,12)$
$(1,11,9,10,8,12)(2,5,7,4,3,6)$
$(1,5)(2,12)(3,10)(4,9)(6,8)(7,11)$
$(1,8,9)(2,7,3)(4,5,6)(10,12,11)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,12)(3,10)(4,9)(6,8)(7,11)$$-2$
$3$$2$$(1,10)(2,4)(3,5)(6,7)(8,11)(9,12)$$0$
$3$$2$$(1,3)(2,9)(4,12)(5,10)(6,11)(7,8)$$0$
$1$$3$$(1,9,8)(2,7,3)(4,6,5)(10,12,11)$$-2 \zeta_{3} - 2$
$1$$3$$(1,8,9)(2,3,7)(4,5,6)(10,11,12)$$2 \zeta_{3}$
$2$$3$$(1,8,9)(2,7,3)(4,5,6)(10,12,11)$$-1$
$2$$3$$(2,3,7)(10,11,12)$$\zeta_{3} + 1$
$2$$3$$(2,7,3)(10,12,11)$$-\zeta_{3}$
$1$$6$$(1,4,8,5,9,6)(2,11,3,12,7,10)$$2 \zeta_{3} + 2$
$1$$6$$(1,6,9,5,8,4)(2,10,7,12,3,11)$$-2 \zeta_{3}$
$2$$6$$(1,6,9,5,8,4)(2,11,3,12,7,10)$$1$
$2$$6$$(1,5)(2,10,7,12,3,11)(4,9)(6,8)$$-\zeta_{3} - 1$
$2$$6$$(1,5)(2,11,3,12,7,10)(4,9)(6,8)$$\zeta_{3}$
$3$$6$$(1,11,9,10,8,12)(2,5,7,4,3,6)$$0$
$3$$6$$(1,12,8,10,9,11)(2,6,3,4,7,5)$$0$
$3$$6$$(1,7,9,3,8,2)(4,10,6,12,5,11)$$0$
$3$$6$$(1,2,8,3,9,7)(4,11,5,12,6,10)$$0$