Normalized defining polynomial
\( x^{12} - 2 x^{11} + 6 x^{10} - 14 x^{9} + 39 x^{8} - 72 x^{7} + 160 x^{6} - 218 x^{5} + 338 x^{4} + \cdots + 109 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(45781510778228736\)
\(\medspace = 2^{12}\cdot 3^{6}\cdot 7^{6}\cdot 19^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(24.46\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{1/2}7^{1/2}19^{2/3}\approx 65.25924479612236$ | ||
Ramified primes: |
\(2\), \(3\), \(7\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{14}a^{10}+\frac{1}{14}a^{9}-\frac{1}{7}a^{8}-\frac{3}{14}a^{7}+\frac{3}{14}a^{6}-\frac{1}{7}a^{5}-\frac{5}{14}a^{4}-\frac{1}{14}a^{3}+\frac{5}{14}a^{2}+\frac{2}{7}a-\frac{3}{7}$, $\frac{1}{870338}a^{11}+\frac{10470}{435169}a^{10}-\frac{8957}{124334}a^{9}-\frac{5388}{62167}a^{8}-\frac{157769}{870338}a^{7}+\frac{26623}{435169}a^{6}-\frac{36877}{435169}a^{5}+\frac{84565}{435169}a^{4}-\frac{115264}{435169}a^{3}+\frac{30014}{62167}a^{2}+\frac{68287}{870338}a+\frac{174756}{435169}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{512}{62167}a^{11}-\frac{5055}{124334}a^{10}+\frac{2105}{17762}a^{9}-\frac{2211}{8881}a^{8}+\frac{39372}{62167}a^{7}-\frac{91528}{62167}a^{6}+\frac{381811}{124334}a^{5}-\frac{314906}{62167}a^{4}+\frac{857765}{124334}a^{3}-\frac{121063}{17762}a^{2}+\frac{609683}{124334}a-\frac{243799}{124334}$, $\frac{10235}{435169}a^{11}+\frac{31251}{435169}a^{10}-\frac{5213}{62167}a^{9}+\frac{28201}{124334}a^{8}-\frac{164391}{435169}a^{7}+\frac{887226}{435169}a^{6}-\frac{1221649}{435169}a^{5}+\frac{7408743}{870338}a^{4}-\frac{3262613}{435169}a^{3}+\frac{1640985}{124334}a^{2}-\frac{2885818}{435169}a+\frac{5616475}{870338}$, $\frac{11359}{435169}a^{11}-\frac{55649}{435169}a^{10}+\frac{22989}{124334}a^{9}-\frac{4755}{8881}a^{8}+\frac{1285583}{870338}a^{7}-\frac{1431270}{435169}a^{6}+\frac{2290985}{435169}a^{5}-\frac{4226487}{435169}a^{4}+\frac{8578523}{870338}a^{3}-\frac{771132}{62167}a^{2}+\frac{2874056}{435169}a-\frac{2861828}{435169}$, $\frac{19059}{435169}a^{11}-\frac{95527}{870338}a^{10}+\frac{16881}{62167}a^{9}-\frac{13321}{17762}a^{8}+\frac{1626679}{870338}a^{7}-\frac{3167705}{870338}a^{6}+\frac{6737305}{870338}a^{5}-\frac{5256642}{435169}a^{4}+\frac{6671442}{435169}a^{3}-\frac{1078012}{62167}a^{2}+\frac{11656805}{870338}a-\frac{7584893}{870338}$, $\frac{49751}{870338}a^{11}+\frac{53521}{870338}a^{10}+\frac{1115}{62167}a^{9}-\frac{3165}{62167}a^{8}+\frac{113201}{435169}a^{7}+\frac{612441}{435169}a^{6}-\frac{57290}{435169}a^{5}+\frac{3087773}{435169}a^{4}-\frac{4098221}{870338}a^{3}+\frac{1486761}{124334}a^{2}-\frac{4556037}{870338}a+\frac{7983819}{870338}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 678.2219033596916 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 678.2219033596916 \cdot 2}{2\cdot\sqrt{45781510778228736}}\cr\approx \mathstrut & 0.195032039083292 \end{aligned}\]
Galois group
$C_6\times S_3$ (as 12T18):
A solvable group of order 36 |
The 18 conjugacy class representatives for $C_6\times S_3$ |
Character table for $C_6\times S_3$ |
Intermediate fields
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{3}, \sqrt{-7})\), 6.0.213966144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 36 |
Degree 18 siblings: | 18.6.1343577325387856327724233392128.1, deg 18 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/23.3.0.1}{3} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(3\)
| 3.12.6.2 | $x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
\(7\)
| 7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(19\)
| 19.6.4.2 | $x^{6} - 342 x^{3} + 722$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
19.6.0.1 | $x^{6} + 17 x^{3} + 17 x^{2} + 6 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.12.2t1.a.a | $1$ | $ 2^{2} \cdot 3 $ | \(\Q(\sqrt{3}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.84.2t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 7 $ | \(\Q(\sqrt{-21}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.1596.6t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 19 $ | 6.0.77241777984.6 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.133.6t1.j.a | $1$ | $ 7 \cdot 19 $ | 6.0.44700103.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.19.3t1.a.a | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.19.3t1.a.b | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.228.6t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 19 $ | 6.6.225194688.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.1596.6t1.a.b | $1$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 19 $ | 6.0.77241777984.6 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.228.6t1.a.b | $1$ | $ 2^{2} \cdot 3 \cdot 19 $ | 6.6.225194688.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.133.6t1.j.b | $1$ | $ 7 \cdot 19 $ | 6.0.44700103.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
2.30324.3t2.a.a | $2$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 19^{2}$ | 3.1.30324.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.30324.6t3.c.a | $2$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 19^{2}$ | 6.2.11034539712.4 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
* | 2.1596.6t5.c.a | $2$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 19 $ | 6.0.213966144.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.1596.6t5.c.b | $2$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 19 $ | 6.0.213966144.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.1596.12t18.b.a | $2$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 19 $ | 12.0.45781510778228736.1 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |
* | 2.1596.12t18.b.b | $2$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 19 $ | 12.0.45781510778228736.1 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |