Basic invariants
Dimension: | $7$ |
Group: | $C_2^3:(C_7: C_3)$ |
Conductor: | \(610007075774208\)\(\medspace = 2^{8} \cdot 3^{10} \cdot 7^{9} \) |
Artin number field: | Galois closure of 8.0.9682651996416.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | 24T283 |
Parity: | even |
Projective image: | $F_8:C_3$ |
Projective field: | Galois closure of 8.0.9682651996416.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{3} + 4x + 17 \)
Roots:
$r_{ 1 }$ | $=$ | \( 12 a^{2} + 2 a + 3 + \left(15 a^{2} + 3\right)\cdot 19 + \left(6 a^{2} + 8 a + 4\right)\cdot 19^{2} + \left(5 a^{2} + 8\right)\cdot 19^{3} + \left(17 a^{2} + 9\right)\cdot 19^{4} + \left(13 a^{2} + 18 a + 15\right)\cdot 19^{5} + \left(10 a^{2} + 5 a + 2\right)\cdot 19^{6} + \left(5 a^{2} + 12 a + 6\right)\cdot 19^{7} + \left(17 a^{2} + 2 a + 1\right)\cdot 19^{8} + \left(a^{2} + 7 a + 5\right)\cdot 19^{9} +O(19^{10})\) |
$r_{ 2 }$ | $=$ | \( 15 a^{2} + 13 a + 11 + \left(12 a^{2} + 14\right)\cdot 19 + \left(3 a^{2} + 4 a + 14\right)\cdot 19^{2} + \left(15 a^{2} + 2 a + 2\right)\cdot 19^{3} + \left(a^{2} + 14 a + 6\right)\cdot 19^{4} + \left(15 a^{2} + 9 a + 12\right)\cdot 19^{5} + \left(9 a^{2} + 15 a + 6\right)\cdot 19^{6} + \left(13 a^{2} + 8\right)\cdot 19^{7} + \left(6 a^{2} + 7 a + 17\right)\cdot 19^{8} + \left(16 a^{2} + 6 a + 11\right)\cdot 19^{9} +O(19^{10})\) |
$r_{ 3 }$ | $=$ | \( 7 + 8\cdot 19 + 14\cdot 19^{2} + 16\cdot 19^{3} + 4\cdot 19^{4} + 19^{5} + 16\cdot 19^{6} + 17\cdot 19^{7} + 10\cdot 19^{8} + 3\cdot 19^{9} +O(19^{10})\) |
$r_{ 4 }$ | $=$ | \( a^{2} + 15 a + 3 + \left(4 a^{2} + 14 a + 5\right)\cdot 19 + \left(a^{2} + 4 a + 2\right)\cdot 19^{2} + \left(4 a^{2} + 4 a\right)\cdot 19^{3} + \left(12 a^{2} + 15 a + 2\right)\cdot 19^{4} + \left(14 a^{2} + 16 a + 6\right)\cdot 19^{5} + \left(13 a^{2} + 12 a + 7\right)\cdot 19^{6} + \left(7 a^{2} + 8 a + 13\right)\cdot 19^{7} + \left(15 a^{2} + 4 a + 11\right)\cdot 19^{8} + \left(7 a^{2} + 4 a + 13\right)\cdot 19^{9} +O(19^{10})\) |
$r_{ 5 }$ | $=$ | \( 11 a^{2} + 4 a + 13 + \left(9 a^{2} + 18 a + 18\right)\cdot 19 + \left(8 a^{2} + 6 a + 14\right)\cdot 19^{2} + \left(17 a^{2} + 16 a + 8\right)\cdot 19^{3} + \left(18 a^{2} + 4 a + 7\right)\cdot 19^{4} + \left(8 a^{2} + 10 a + 2\right)\cdot 19^{5} + \left(17 a^{2} + 16 a + 8\right)\cdot 19^{6} + \left(18 a^{2} + 5 a + 16\right)\cdot 19^{7} + \left(13 a^{2} + 9 a + 17\right)\cdot 19^{8} + \left(5 a + 1\right)\cdot 19^{9} +O(19^{10})\) |
$r_{ 6 }$ | $=$ | \( 9 a^{2} + 7 a + 18 + \left(11 a^{2} + 10 a + 5\right)\cdot 19 + \left(12 a^{2} + 8 a + 7\right)\cdot 19^{2} + \left(3 a^{2} + 10 a + 5\right)\cdot 19^{3} + \left(13 a^{2} + 2 a + 17\right)\cdot 19^{4} + \left(17 a^{2} + 13 a + 7\right)\cdot 19^{5} + \left(13 a^{2} + 1\right)\cdot 19^{6} + \left(6 a^{2} + 15 a + 17\right)\cdot 19^{7} + \left(4 a^{2} + 17 a + 13\right)\cdot 19^{8} + \left(4 a^{2} + 12 a + 16\right)\cdot 19^{9} +O(19^{10})\) |
$r_{ 7 }$ | $=$ | \( 3 + 10\cdot 19 + 11\cdot 19^{2} + 14\cdot 19^{3} + 6\cdot 19^{4} + 10\cdot 19^{5} + 16\cdot 19^{6} + 10\cdot 19^{7} + 2\cdot 19^{8} + 18\cdot 19^{9} +O(19^{10})\) |
$r_{ 8 }$ | $=$ | \( 9 a^{2} + 16 a + 18 + \left(3 a^{2} + 12 a + 9\right)\cdot 19 + \left(5 a^{2} + 5 a + 6\right)\cdot 19^{2} + \left(11 a^{2} + 4 a\right)\cdot 19^{3} + \left(12 a^{2} + a + 3\right)\cdot 19^{4} + \left(5 a^{2} + 8 a + 1\right)\cdot 19^{5} + \left(10 a^{2} + 5 a + 17\right)\cdot 19^{6} + \left(4 a^{2} + 14 a + 4\right)\cdot 19^{7} + \left(18 a^{2} + 15 a\right)\cdot 19^{8} + \left(6 a^{2} + a + 5\right)\cdot 19^{9} +O(19^{10})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $7$ | $7$ |
$7$ | $2$ | $(1,6)(2,7)(3,4)(5,8)$ | $-1$ | $-1$ |
$28$ | $3$ | $(1,3,7)(2,6,4)$ | $\zeta_{3}$ | $-\zeta_{3} - 1$ |
$28$ | $3$ | $(1,7,3)(2,4,6)$ | $-\zeta_{3} - 1$ | $\zeta_{3}$ |
$28$ | $6$ | $(1,2,3,6,7,4)(5,8)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ |
$28$ | $6$ | $(1,4,7,6,3,2)(5,8)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ |
$24$ | $7$ | $(1,2,5,7,4,3,8)$ | $0$ | $0$ |
$24$ | $7$ | $(1,7,8,5,3,2,4)$ | $0$ | $0$ |