Properties

Label 7.610...208.24t283.a.b
Dimension $7$
Group $C_2^3:(C_7: C_3)$
Conductor $6.100\times 10^{14}$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $7$
Group: $C_2^3:(C_7: C_3)$
Conductor: \(610007075774208\)\(\medspace = 2^{8} \cdot 3^{10} \cdot 7^{9} \)
Artin stem field: Galois closure of 8.0.9682651996416.1
Galois orbit size: $2$
Smallest permutation container: 24T283
Parity: even
Determinant: 1.63.3t1.a.b
Projective image: $F_8:C_3$
Projective stem field: Galois closure of 8.0.9682651996416.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 14x^{6} + 168x^{4} - 504x^{3} + 616x^{2} - 180x + 28 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{3} + 4x + 17 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 12 a^{2} + 2 a + 3 + \left(15 a^{2} + 3\right)\cdot 19 + \left(6 a^{2} + 8 a + 4\right)\cdot 19^{2} + \left(5 a^{2} + 8\right)\cdot 19^{3} + \left(17 a^{2} + 9\right)\cdot 19^{4} + \left(13 a^{2} + 18 a + 15\right)\cdot 19^{5} + \left(10 a^{2} + 5 a + 2\right)\cdot 19^{6} + \left(5 a^{2} + 12 a + 6\right)\cdot 19^{7} + \left(17 a^{2} + 2 a + 1\right)\cdot 19^{8} + \left(a^{2} + 7 a + 5\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 a^{2} + 13 a + 11 + \left(12 a^{2} + 14\right)\cdot 19 + \left(3 a^{2} + 4 a + 14\right)\cdot 19^{2} + \left(15 a^{2} + 2 a + 2\right)\cdot 19^{3} + \left(a^{2} + 14 a + 6\right)\cdot 19^{4} + \left(15 a^{2} + 9 a + 12\right)\cdot 19^{5} + \left(9 a^{2} + 15 a + 6\right)\cdot 19^{6} + \left(13 a^{2} + 8\right)\cdot 19^{7} + \left(6 a^{2} + 7 a + 17\right)\cdot 19^{8} + \left(16 a^{2} + 6 a + 11\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 7 + 8\cdot 19 + 14\cdot 19^{2} + 16\cdot 19^{3} + 4\cdot 19^{4} + 19^{5} + 16\cdot 19^{6} + 17\cdot 19^{7} + 10\cdot 19^{8} + 3\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( a^{2} + 15 a + 3 + \left(4 a^{2} + 14 a + 5\right)\cdot 19 + \left(a^{2} + 4 a + 2\right)\cdot 19^{2} + \left(4 a^{2} + 4 a\right)\cdot 19^{3} + \left(12 a^{2} + 15 a + 2\right)\cdot 19^{4} + \left(14 a^{2} + 16 a + 6\right)\cdot 19^{5} + \left(13 a^{2} + 12 a + 7\right)\cdot 19^{6} + \left(7 a^{2} + 8 a + 13\right)\cdot 19^{7} + \left(15 a^{2} + 4 a + 11\right)\cdot 19^{8} + \left(7 a^{2} + 4 a + 13\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 a^{2} + 4 a + 13 + \left(9 a^{2} + 18 a + 18\right)\cdot 19 + \left(8 a^{2} + 6 a + 14\right)\cdot 19^{2} + \left(17 a^{2} + 16 a + 8\right)\cdot 19^{3} + \left(18 a^{2} + 4 a + 7\right)\cdot 19^{4} + \left(8 a^{2} + 10 a + 2\right)\cdot 19^{5} + \left(17 a^{2} + 16 a + 8\right)\cdot 19^{6} + \left(18 a^{2} + 5 a + 16\right)\cdot 19^{7} + \left(13 a^{2} + 9 a + 17\right)\cdot 19^{8} + \left(5 a + 1\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 9 a^{2} + 7 a + 18 + \left(11 a^{2} + 10 a + 5\right)\cdot 19 + \left(12 a^{2} + 8 a + 7\right)\cdot 19^{2} + \left(3 a^{2} + 10 a + 5\right)\cdot 19^{3} + \left(13 a^{2} + 2 a + 17\right)\cdot 19^{4} + \left(17 a^{2} + 13 a + 7\right)\cdot 19^{5} + \left(13 a^{2} + 1\right)\cdot 19^{6} + \left(6 a^{2} + 15 a + 17\right)\cdot 19^{7} + \left(4 a^{2} + 17 a + 13\right)\cdot 19^{8} + \left(4 a^{2} + 12 a + 16\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 3 + 10\cdot 19 + 11\cdot 19^{2} + 14\cdot 19^{3} + 6\cdot 19^{4} + 10\cdot 19^{5} + 16\cdot 19^{6} + 10\cdot 19^{7} + 2\cdot 19^{8} + 18\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 9 a^{2} + 16 a + 18 + \left(3 a^{2} + 12 a + 9\right)\cdot 19 + \left(5 a^{2} + 5 a + 6\right)\cdot 19^{2} + \left(11 a^{2} + 4 a\right)\cdot 19^{3} + \left(12 a^{2} + a + 3\right)\cdot 19^{4} + \left(5 a^{2} + 8 a + 1\right)\cdot 19^{5} + \left(10 a^{2} + 5 a + 17\right)\cdot 19^{6} + \left(4 a^{2} + 14 a + 4\right)\cdot 19^{7} + \left(18 a^{2} + 15 a\right)\cdot 19^{8} + \left(6 a^{2} + a + 5\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,6)(3,8)(4,5)$
$(1,5)(2,3)(4,7)(6,8)$
$(1,2,3,6,7,4)(5,8)$
$(1,3)(2,5)(4,6)(7,8)$
$(1,2,5,7,4,3,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$7$
$7$$2$$(1,6)(2,7)(3,4)(5,8)$$-1$
$28$$3$$(1,3,7)(2,6,4)$$-\zeta_{3} - 1$
$28$$3$$(1,7,3)(2,4,6)$$\zeta_{3}$
$28$$6$$(1,2,3,6,7,4)(5,8)$$-\zeta_{3}$
$28$$6$$(1,4,7,6,3,2)(5,8)$$\zeta_{3} + 1$
$24$$7$$(1,2,5,7,4,3,8)$$0$
$24$$7$$(1,7,8,5,3,2,4)$$0$