from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(100315, base_ring=CyclotomicField(2866))
M = H._module
chi = DirichletCharacter(H, M([0,1586]))
pari: [g,chi] = znchar(Mod(2126,100315))
χ100315(16,⋅)
χ100315(146,⋅)
χ100315(211,⋅)
χ100315(256,⋅)
χ100315(281,⋅)
χ100315(376,⋅)
χ100315(446,⋅)
χ100315(696,⋅)
χ100315(726,⋅)
χ100315(796,⋅)
χ100315(891,⋅)
χ100315(941,⋅)
χ100315(971,⋅)
χ100315(981,⋅)
χ100315(1096,⋅)
χ100315(1201,⋅)
χ100315(1226,⋅)
χ100315(1301,⋅)
χ100315(1311,⋅)
χ100315(1461,⋅)
χ100315(1506,⋅)
χ100315(1751,⋅)
χ100315(1801,⋅)
χ100315(1826,⋅)
χ100315(1916,⋅)
χ100315(1981,⋅)
χ100315(2086,⋅)
χ100315(2126,⋅)
χ100315(2166,⋅)
χ100315(2181,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(40127,40131) → (1,e(1433793))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ100315(2126,a) |
1 | 1 | e(14331123) | e(1433637) | e(1433813) | e(1433327) | e(1433348) | e(1433503) | e(14331274) | e(14331085) | e(143317) | e(14331341) |