Properties

Label 100315.281
Modulus 100315100315
Conductor 2006320063
Order 14331433
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100315, base_ring=CyclotomicField(2866))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1428]))
 
pari: [g,chi] = znchar(Mod(281,100315))
 

Basic properties

Modulus: 100315100315
Conductor: 2006320063
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 14331433
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ20063(281,)\chi_{20063}(281,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100315.m

χ100315(16,)\chi_{100315}(16,\cdot) χ100315(146,)\chi_{100315}(146,\cdot) χ100315(211,)\chi_{100315}(211,\cdot) χ100315(256,)\chi_{100315}(256,\cdot) χ100315(281,)\chi_{100315}(281,\cdot) χ100315(376,)\chi_{100315}(376,\cdot) χ100315(446,)\chi_{100315}(446,\cdot) χ100315(696,)\chi_{100315}(696,\cdot) χ100315(726,)\chi_{100315}(726,\cdot) χ100315(796,)\chi_{100315}(796,\cdot) χ100315(891,)\chi_{100315}(891,\cdot) χ100315(941,)\chi_{100315}(941,\cdot) χ100315(971,)\chi_{100315}(971,\cdot) χ100315(981,)\chi_{100315}(981,\cdot) χ100315(1096,)\chi_{100315}(1096,\cdot) χ100315(1201,)\chi_{100315}(1201,\cdot) χ100315(1226,)\chi_{100315}(1226,\cdot) χ100315(1301,)\chi_{100315}(1301,\cdot) χ100315(1311,)\chi_{100315}(1311,\cdot) χ100315(1461,)\chi_{100315}(1461,\cdot) χ100315(1506,)\chi_{100315}(1506,\cdot) χ100315(1751,)\chi_{100315}(1751,\cdot) χ100315(1801,)\chi_{100315}(1801,\cdot) χ100315(1826,)\chi_{100315}(1826,\cdot) χ100315(1916,)\chi_{100315}(1916,\cdot) χ100315(1981,)\chi_{100315}(1981,\cdot) χ100315(2086,)\chi_{100315}(2086,\cdot) χ100315(2126,)\chi_{100315}(2126,\cdot) χ100315(2166,)\chi_{100315}(2166,\cdot) χ100315(2181,)\chi_{100315}(2181,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1433)\Q(\zeta_{1433})
Fixed field: Number field defined by a degree 1433 polynomial (not computed)

Values on generators

(40127,40131)(40127,40131)(1,e(7141433))(1,e\left(\frac{714}{1433}\right))

First values

aa 1-11122334466778899111112121313
χ100315(281,a) \chi_{ 100315 }(281, a) 1111e(9281433)e\left(\frac{928}{1433}\right)e(6911433)e\left(\frac{691}{1433}\right)e(4231433)e\left(\frac{423}{1433}\right)e(1861433)e\left(\frac{186}{1433}\right)e(3821433)e\left(\frac{382}{1433}\right)e(13511433)e\left(\frac{1351}{1433}\right)e(13821433)e\left(\frac{1382}{1433}\right)e(10511433)e\left(\frac{1051}{1433}\right)e(11141433)e\left(\frac{1114}{1433}\right)e(10521433)e\left(\frac{1052}{1433}\right)
sage: chi.jacobi_sum(n)
 
χ100315(281,a)   \chi_{ 100315 }(281,a) \; at   a=\;a = e.g. 2