Properties

Label 100315.221
Modulus 100315100315
Conductor 2006320063
Order 2006220062
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100315, base_ring=CyclotomicField(20062))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4831]))
 
pari: [g,chi] = znchar(Mod(221,100315))
 

Basic properties

Modulus: 100315100315
Conductor: 2006320063
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2006220062
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ20063(221,)\chi_{20063}(221,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100315.t

χ100315(21,)\chi_{100315}(21,\cdot) χ100315(41,)\chi_{100315}(41,\cdot) χ100315(51,)\chi_{100315}(51,\cdot) χ100315(56,)\chi_{100315}(56,\cdot) χ100315(86,)\chi_{100315}(86,\cdot) χ100315(91,)\chi_{100315}(91,\cdot) χ100315(126,)\chi_{100315}(126,\cdot) χ100315(131,)\chi_{100315}(131,\cdot) χ100315(136,)\chi_{100315}(136,\cdot) χ100315(161,)\chi_{100315}(161,\cdot) χ100315(181,)\chi_{100315}(181,\cdot) χ100315(191,)\chi_{100315}(191,\cdot) χ100315(206,)\chi_{100315}(206,\cdot) χ100315(221,)\chi_{100315}(221,\cdot) χ100315(231,)\chi_{100315}(231,\cdot) χ100315(236,)\chi_{100315}(236,\cdot) χ100315(246,)\chi_{100315}(246,\cdot) χ100315(266,)\chi_{100315}(266,\cdot) χ100315(311,)\chi_{100315}(311,\cdot) χ100315(316,)\chi_{100315}(316,\cdot) χ100315(326,)\chi_{100315}(326,\cdot) χ100315(336,)\chi_{100315}(336,\cdot) χ100315(356,)\chi_{100315}(356,\cdot) χ100315(366,)\chi_{100315}(366,\cdot) χ100315(371,)\chi_{100315}(371,\cdot) χ100315(381,)\chi_{100315}(381,\cdot) χ100315(391,)\chi_{100315}(391,\cdot) χ100315(401,)\chi_{100315}(401,\cdot) χ100315(421,)\chi_{100315}(421,\cdot) χ100315(451,)\chi_{100315}(451,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ10031)\Q(\zeta_{10031})
Fixed field: Number field defined by a degree 20062 polynomial (not computed)

Values on generators

(40127,40131)(40127,40131)(1,e(483120062))(1,e\left(\frac{4831}{20062}\right))

First values

aa 1-11122334466778899111112121313
χ100315(221,a) \chi_{ 100315 }(221, a) 1-111e(5111433)e\left(\frac{511}{1433}\right)e(357310031)e\left(\frac{3573}{10031}\right)e(10221433)e\left(\frac{1022}{1433}\right)e(715010031)e\left(\frac{7150}{10031}\right)e(1070920062)e\left(\frac{10709}{20062}\right)e(1001433)e\left(\frac{100}{1433}\right)e(714610031)e\left(\frac{7146}{10031}\right)e(109410031)e\left(\frac{1094}{10031}\right)e(69610031)e\left(\frac{696}{10031}\right)e(929910031)e\left(\frac{9299}{10031}\right)
sage: chi.jacobi_sum(n)
 
χ100315(221,a)   \chi_{ 100315 }(221,a) \; at   a=\;a = e.g. 2