Properties

Label 100315.221
Modulus $100315$
Conductor $20063$
Order $20062$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100315, base_ring=CyclotomicField(20062))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4831]))
 
pari: [g,chi] = znchar(Mod(221,100315))
 

Basic properties

Modulus: \(100315\)
Conductor: \(20063\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20062\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20063}(221,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100315.t

\(\chi_{100315}(21,\cdot)\) \(\chi_{100315}(41,\cdot)\) \(\chi_{100315}(51,\cdot)\) \(\chi_{100315}(56,\cdot)\) \(\chi_{100315}(86,\cdot)\) \(\chi_{100315}(91,\cdot)\) \(\chi_{100315}(126,\cdot)\) \(\chi_{100315}(131,\cdot)\) \(\chi_{100315}(136,\cdot)\) \(\chi_{100315}(161,\cdot)\) \(\chi_{100315}(181,\cdot)\) \(\chi_{100315}(191,\cdot)\) \(\chi_{100315}(206,\cdot)\) \(\chi_{100315}(221,\cdot)\) \(\chi_{100315}(231,\cdot)\) \(\chi_{100315}(236,\cdot)\) \(\chi_{100315}(246,\cdot)\) \(\chi_{100315}(266,\cdot)\) \(\chi_{100315}(311,\cdot)\) \(\chi_{100315}(316,\cdot)\) \(\chi_{100315}(326,\cdot)\) \(\chi_{100315}(336,\cdot)\) \(\chi_{100315}(356,\cdot)\) \(\chi_{100315}(366,\cdot)\) \(\chi_{100315}(371,\cdot)\) \(\chi_{100315}(381,\cdot)\) \(\chi_{100315}(391,\cdot)\) \(\chi_{100315}(401,\cdot)\) \(\chi_{100315}(421,\cdot)\) \(\chi_{100315}(451,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{10031})$
Fixed field: Number field defined by a degree 20062 polynomial (not computed)

Values on generators

\((40127,40131)\) → \((1,e\left(\frac{4831}{20062}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 100315 }(221, a) \) \(-1\)\(1\)\(e\left(\frac{511}{1433}\right)\)\(e\left(\frac{3573}{10031}\right)\)\(e\left(\frac{1022}{1433}\right)\)\(e\left(\frac{7150}{10031}\right)\)\(e\left(\frac{10709}{20062}\right)\)\(e\left(\frac{100}{1433}\right)\)\(e\left(\frac{7146}{10031}\right)\)\(e\left(\frac{1094}{10031}\right)\)\(e\left(\frac{696}{10031}\right)\)\(e\left(\frac{9299}{10031}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 100315 }(221,a) \;\) at \(\;a = \) e.g. 2