from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(100315, base_ring=CyclotomicField(20062))
M = H._module
chi = DirichletCharacter(H, M([0,13183]))
pari: [g,chi] = znchar(Mod(451,100315))
χ100315(21,⋅)
χ100315(41,⋅)
χ100315(51,⋅)
χ100315(56,⋅)
χ100315(86,⋅)
χ100315(91,⋅)
χ100315(126,⋅)
χ100315(131,⋅)
χ100315(136,⋅)
χ100315(161,⋅)
χ100315(181,⋅)
χ100315(191,⋅)
χ100315(206,⋅)
χ100315(221,⋅)
χ100315(231,⋅)
χ100315(236,⋅)
χ100315(246,⋅)
χ100315(266,⋅)
χ100315(311,⋅)
χ100315(316,⋅)
χ100315(326,⋅)
χ100315(336,⋅)
χ100315(356,⋅)
χ100315(366,⋅)
χ100315(371,⋅)
χ100315(381,⋅)
χ100315(391,⋅)
χ100315(401,⋅)
χ100315(421,⋅)
χ100315(451,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Field of values: |
Q(ζ10031) |
Fixed field: |
Number field defined by a degree 20062 polynomial (not computed)
|
(40127,40131) → (1,e(2006213183))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ100315(451,a) |
−1 | 1 | e(1433237) | e(100314038) | e(1433474) | e(100315697) | e(200623015) | e(1433711) | e(100318076) | e(100316374) | e(100317356) | e(100314024) |