Properties

Label 100315.753
Modulus 100315100315
Conductor 100315100315
Order 57325732
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100315, base_ring=CyclotomicField(5732))
 
M = H._module
 
chi = DirichletCharacter(H, M([4299,44]))
 
pari: [g,chi] = znchar(Mod(753,100315))
 

Basic properties

Modulus: 100315100315
Conductor: 100315100315
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 57325732
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100315.r

χ100315(2,)\chi_{100315}(2,\cdot) χ100315(8,)\chi_{100315}(8,\cdot) χ100315(32,)\chi_{100315}(32,\cdot) χ100315(47,)\chi_{100315}(47,\cdot) χ100315(73,)\chi_{100315}(73,\cdot) χ100315(87,)\chi_{100315}(87,\cdot) χ100315(128,)\chi_{100315}(128,\cdot) χ100315(137,)\chi_{100315}(137,\cdot) χ100315(188,)\chi_{100315}(188,\cdot) χ100315(223,)\chi_{100315}(223,\cdot) χ100315(292,)\chi_{100315}(292,\cdot) χ100315(317,)\chi_{100315}(317,\cdot) χ100315(348,)\chi_{100315}(348,\cdot) χ100315(357,)\chi_{100315}(357,\cdot) χ100315(363,)\chi_{100315}(363,\cdot) χ100315(377,)\chi_{100315}(377,\cdot) χ100315(398,)\chi_{100315}(398,\cdot) χ100315(422,)\chi_{100315}(422,\cdot) χ100315(512,)\chi_{100315}(512,\cdot) χ100315(548,)\chi_{100315}(548,\cdot) χ100315(562,)\chi_{100315}(562,\cdot) χ100315(613,)\chi_{100315}(613,\cdot) χ100315(627,)\chi_{100315}(627,\cdot) χ100315(697,)\chi_{100315}(697,\cdot) χ100315(752,)\chi_{100315}(752,\cdot) χ100315(753,)\chi_{100315}(753,\cdot) χ100315(877,)\chi_{100315}(877,\cdot) χ100315(892,)\chi_{100315}(892,\cdot) χ100315(913,)\chi_{100315}(913,\cdot) χ100315(917,)\chi_{100315}(917,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5732)\Q(\zeta_{5732})
Fixed field: Number field defined by a degree 5732 polynomial (not computed)

Values on generators

(40127,40131)(40127,40131)(i,e(111433))(-i,e\left(\frac{11}{1433}\right))

First values

aa 1-11122334466778899111112121313
χ100315(753,a) \chi_{ 100315 }(753, a) 1-111e(17235732)e\left(\frac{1723}{5732}\right)e(53215732)e\left(\frac{5321}{5732}\right)e(17232866)e\left(\frac{1723}{2866}\right)e(3281433)e\left(\frac{328}{1433}\right)e(10155732)e\left(\frac{1015}{5732}\right)e(51695732)e\left(\frac{5169}{5732}\right)e(24552866)e\left(\frac{2455}{2866}\right)e(8211433)e\left(\frac{821}{1433}\right)e(30355732)e\left(\frac{3035}{5732}\right)e(35535732)e\left(\frac{3553}{5732}\right)
sage: chi.jacobi_sum(n)
 
χ100315(753,a)   \chi_{ 100315 }(753,a) \; at   a=\;a = e.g. 2