from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(100315, base_ring=CyclotomicField(5732))
M = H._module
chi = DirichletCharacter(H, M([4299,44]))
pari: [g,chi] = znchar(Mod(753,100315))
χ100315(2,⋅)
χ100315(8,⋅)
χ100315(32,⋅)
χ100315(47,⋅)
χ100315(73,⋅)
χ100315(87,⋅)
χ100315(128,⋅)
χ100315(137,⋅)
χ100315(188,⋅)
χ100315(223,⋅)
χ100315(292,⋅)
χ100315(317,⋅)
χ100315(348,⋅)
χ100315(357,⋅)
χ100315(363,⋅)
χ100315(377,⋅)
χ100315(398,⋅)
χ100315(422,⋅)
χ100315(512,⋅)
χ100315(548,⋅)
χ100315(562,⋅)
χ100315(613,⋅)
χ100315(627,⋅)
χ100315(697,⋅)
χ100315(752,⋅)
χ100315(753,⋅)
χ100315(877,⋅)
χ100315(892,⋅)
χ100315(913,⋅)
χ100315(917,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(40127,40131) → (−i,e(143311))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ100315(753,a) |
−1 | 1 | e(57321723) | e(57325321) | e(28661723) | e(1433328) | e(57321015) | e(57325169) | e(28662455) | e(1433821) | e(57323035) | e(57323553) |