Properties

Label 1037.659
Modulus $1037$
Conductor $1037$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1037, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,38]))
 
pari: [g,chi] = znchar(Mod(659,1037))
 

Basic properties

Modulus: \(1037\)
Conductor: \(1037\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1037.ch

\(\chi_{1037}(4,\cdot)\) \(\chi_{1037}(106,\cdot)\) \(\chi_{1037}(293,\cdot)\) \(\chi_{1037}(310,\cdot)\) \(\chi_{1037}(344,\cdot)\) \(\chi_{1037}(370,\cdot)\) \(\chi_{1037}(412,\cdot)\) \(\chi_{1037}(446,\cdot)\) \(\chi_{1037}(463,\cdot)\) \(\chi_{1037}(472,\cdot)\) \(\chi_{1037}(659,\cdot)\) \(\chi_{1037}(676,\cdot)\) \(\chi_{1037}(710,\cdot)\) \(\chi_{1037}(778,\cdot)\) \(\chi_{1037}(812,\cdot)\) \(\chi_{1037}(829,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((428,307)\) → \((i,e\left(\frac{19}{30}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1037 }(659, a) \) \(1\)\(1\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{11}{60}\right)\)\(e\left(\frac{11}{60}\right)\)\(e\left(\frac{47}{60}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{19}{60}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1037 }(659,a) \;\) at \(\;a = \) e.g. 2