sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1037, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([15,46]))
pari:[g,chi] = znchar(Mod(710,1037))
Modulus: | 1037 | |
Conductor: | 1037 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1037(4,⋅)
χ1037(106,⋅)
χ1037(293,⋅)
χ1037(310,⋅)
χ1037(344,⋅)
χ1037(370,⋅)
χ1037(412,⋅)
χ1037(446,⋅)
χ1037(463,⋅)
χ1037(472,⋅)
χ1037(659,⋅)
χ1037(676,⋅)
χ1037(710,⋅)
χ1037(778,⋅)
χ1037(812,⋅)
χ1037(829,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(428,307) → (i,e(3023))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ1037(710,a) |
1 | 1 | e(154) | e(2017) | e(158) | e(607) | e(607) | e(6019) | e(54) | e(107) | e(6023) | i |
sage:chi.jacobi_sum(n)