from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1053, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([2,45]))
pari: [g,chi] = znchar(Mod(166,1053))
χ1053(43,⋅)
χ1053(49,⋅)
χ1053(160,⋅)
χ1053(166,⋅)
χ1053(277,⋅)
χ1053(283,⋅)
χ1053(394,⋅)
χ1053(400,⋅)
χ1053(511,⋅)
χ1053(517,⋅)
χ1053(628,⋅)
χ1053(634,⋅)
χ1053(745,⋅)
χ1053(751,⋅)
χ1053(862,⋅)
χ1053(868,⋅)
χ1053(979,⋅)
χ1053(985,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,730) → (e(271),e(65))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 14 | 16 | 17 |
χ1053(166,a) |
1 | 1 | e(5447) | e(2720) | e(5419) | e(5441) | e(1811) | e(92) | e(5417) | e(2717) | e(2713) | e(98) |