sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1053, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([4,9]))
pari:[g,chi] = znchar(Mod(745,1053))
Modulus: | 1053 | |
Conductor: | 1053 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 54 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1053(43,⋅)
χ1053(49,⋅)
χ1053(160,⋅)
χ1053(166,⋅)
χ1053(277,⋅)
χ1053(283,⋅)
χ1053(394,⋅)
χ1053(400,⋅)
χ1053(511,⋅)
χ1053(517,⋅)
χ1053(628,⋅)
χ1053(634,⋅)
χ1053(745,⋅)
χ1053(751,⋅)
χ1053(862,⋅)
χ1053(868,⋅)
χ1053(979,⋅)
χ1053(985,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,730) → (e(272),e(61))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 14 | 16 | 17 |
χ1053(745,a) |
1 | 1 | e(5413) | e(2713) | e(5411) | e(541) | e(1813) | e(94) | e(547) | e(277) | e(2726) | e(97) |
sage:chi.jacobi_sum(n)