Properties

Label 109.24
Modulus 109109
Conductor 109109
Order 108108
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(109, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([7]))
 
pari: [g,chi] = znchar(Mod(24,109))
 

Basic properties

Modulus: 109109
Conductor: 109109
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 108108
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 109.l

χ109(6,)\chi_{109}(6,\cdot) χ109(10,)\chi_{109}(10,\cdot) χ109(11,)\chi_{109}(11,\cdot) χ109(13,)\chi_{109}(13,\cdot) χ109(14,)\chi_{109}(14,\cdot) χ109(18,)\chi_{109}(18,\cdot) χ109(24,)\chi_{109}(24,\cdot) χ109(30,)\chi_{109}(30,\cdot) χ109(37,)\chi_{109}(37,\cdot) χ109(39,)\chi_{109}(39,\cdot) χ109(40,)\chi_{109}(40,\cdot) χ109(42,)\chi_{109}(42,\cdot) χ109(44,)\chi_{109}(44,\cdot) χ109(47,)\chi_{109}(47,\cdot) χ109(50,)\chi_{109}(50,\cdot) χ109(51,)\chi_{109}(51,\cdot) χ109(52,)\chi_{109}(52,\cdot) χ109(53,)\chi_{109}(53,\cdot) χ109(56,)\chi_{109}(56,\cdot) χ109(57,)\chi_{109}(57,\cdot) χ109(58,)\chi_{109}(58,\cdot) χ109(59,)\chi_{109}(59,\cdot) χ109(62,)\chi_{109}(62,\cdot) χ109(65,)\chi_{109}(65,\cdot) χ109(67,)\chi_{109}(67,\cdot) χ109(69,)\chi_{109}(69,\cdot) χ109(70,)\chi_{109}(70,\cdot) χ109(72,)\chi_{109}(72,\cdot) χ109(79,)\chi_{109}(79,\cdot) χ109(85,)\chi_{109}(85,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ108)\Q(\zeta_{108})
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

66e(7108)e\left(\frac{7}{108}\right)

First values

aa 1-111223344556677889910101111
χ109(24,a) \chi_{ 109 }(24, a) 1-111e(2536)e\left(\frac{25}{36}\right)e(1027)e\left(\frac{10}{27}\right)e(718)e\left(\frac{7}{18}\right)e(2527)e\left(\frac{25}{27}\right)e(7108)e\left(\frac{7}{108}\right)e(1627)e\left(\frac{16}{27}\right)e(112)e\left(\frac{1}{12}\right)e(2027)e\left(\frac{20}{27}\right)e(67108)e\left(\frac{67}{108}\right)e(41108)e\left(\frac{41}{108}\right)
sage: chi.jacobi_sum(n)
 
χ109(24,a)   \chi_{ 109 }(24,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ109(24,))   \tau_{ a }( \chi_{ 109 }(24,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ109(24,),χ109(n,))   J(\chi_{ 109 }(24,·),\chi_{ 109 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ109(24,))  K(a,b,\chi_{ 109 }(24,·)) \; at   a,b=\; a,b = e.g. 1,2