Properties

Label 1183.729
Modulus 11831183
Conductor 169169
Order 1313
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(26))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,20]))
 
pari: [g,chi] = znchar(Mod(729,1183))
 

Basic properties

Modulus: 11831183
Conductor: 169169
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1313
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ169(53,)\chi_{169}(53,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1183.be

χ1183(92,)\chi_{1183}(92,\cdot) χ1183(183,)\chi_{1183}(183,\cdot) χ1183(274,)\chi_{1183}(274,\cdot) χ1183(365,)\chi_{1183}(365,\cdot) χ1183(456,)\chi_{1183}(456,\cdot) χ1183(547,)\chi_{1183}(547,\cdot) χ1183(638,)\chi_{1183}(638,\cdot) χ1183(729,)\chi_{1183}(729,\cdot) χ1183(820,)\chi_{1183}(820,\cdot) χ1183(911,)\chi_{1183}(911,\cdot) χ1183(1002,)\chi_{1183}(1002,\cdot) χ1183(1093,)\chi_{1183}(1093,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ13)\Q(\zeta_{13})
Fixed field: 13.13.542800770374370512771595361.1

Values on generators

(339,1016)(339,1016)(1,e(1013))(1,e\left(\frac{10}{13}\right))

First values

aa 1-11122334455668899101011111212
χ1183(729,a) \chi_{ 1183 }(729, a) 1111e(1013)e\left(\frac{10}{13}\right)e(513)e\left(\frac{5}{13}\right)e(713)e\left(\frac{7}{13}\right)e(1213)e\left(\frac{12}{13}\right)e(213)e\left(\frac{2}{13}\right)e(413)e\left(\frac{4}{13}\right)e(1013)e\left(\frac{10}{13}\right)e(913)e\left(\frac{9}{13}\right)e(313)e\left(\frac{3}{13}\right)e(1213)e\left(\frac{12}{13}\right)
sage: chi.jacobi_sum(n)
 
χ1183(729,a)   \chi_{ 1183 }(729,a) \; at   a=\;a = e.g. 2