Properties

Label 1183.be
Modulus $1183$
Conductor $169$
Order $13$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(26))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,22]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(92,1183))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1183\)
Conductor: \(169\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(13\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 169.g
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 13.13.542800770374370512771595361.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{1183}(92,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{1183}(183,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{1183}(274,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{1183}(365,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{1183}(456,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{1183}(547,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{1183}(638,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{1183}(729,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{1183}(820,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{1183}(911,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{1183}(1002,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{1183}(1093,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{5}{13}\right)\)