from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([0,22]))
chi.galois_orbit()
[g,chi] = znchar(Mod(92,1183))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1183\) | |
Conductor: | \(169\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(13\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 169.g | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{13})\) |
Fixed field: | 13.13.542800770374370512771595361.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1183}(92,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) |
\(\chi_{1183}(183,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) |
\(\chi_{1183}(274,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) |
\(\chi_{1183}(365,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) |
\(\chi_{1183}(456,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) |
\(\chi_{1183}(547,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) |
\(\chi_{1183}(638,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) |
\(\chi_{1183}(729,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) |
\(\chi_{1183}(820,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) |
\(\chi_{1183}(911,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) |
\(\chi_{1183}(1002,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) |
\(\chi_{1183}(1093,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) |