Properties

Label 1216.127
Modulus 12161216
Conductor 7676
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,0,5]))
 
Copy content pari:[g,chi] = znchar(Mod(127,1216))
 

Basic properties

Modulus: 12161216
Conductor: 7676
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ76(51,)\chi_{76}(51,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1216.bm

χ1216(127,)\chi_{1216}(127,\cdot) χ1216(319,)\chi_{1216}(319,\cdot) χ1216(383,)\chi_{1216}(383,\cdot) χ1216(447,)\chi_{1216}(447,\cdot) χ1216(831,)\chi_{1216}(831,\cdot) χ1216(895,)\chi_{1216}(895,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Q(ζ76)+\Q(\zeta_{76})^+

Values on generators

(191,837,705)(191,837,705)(1,1,e(518))(-1,1,e\left(\frac{5}{18}\right))

First values

aa 1-11133557799111113131515171721212323
χ1216(127,a) \chi_{ 1216 }(127, a) 1111e(19)e\left(\frac{1}{9}\right)e(49)e\left(\frac{4}{9}\right)e(16)e\left(\frac{1}{6}\right)e(29)e\left(\frac{2}{9}\right)e(56)e\left(\frac{5}{6}\right)e(718)e\left(\frac{7}{18}\right)e(59)e\left(\frac{5}{9}\right)e(79)e\left(\frac{7}{9}\right)e(518)e\left(\frac{5}{18}\right)e(118)e\left(\frac{1}{18}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1216(127,a)   \chi_{ 1216 }(127,a) \; at   a=\;a = e.g. 2